
First Round SOI 2022/2023

Solution Booklet

Swiss Olympiad in Informatics

15 September – 30 November 2022

First Round, 2022/2023
Task paragliding

Paragliding
Task Idea Joël Huber & Christopher Burckhardt
Task Preparation Joël Huber
Description English Joël Huber
Description German Bibin Muttappillil
Description French Florian Gatignon
Solution Joël Huber
Correction

Summary
All subtasks shared a common base, which will be more easily explained in this short introduc-
tion.

Given were 𝑁 places on a line, where the 𝑖-th place is at 𝑥-coordinate 𝑥𝑖 and its height above
sealevel is ℎ𝑖 metres. A mouse can fly from one place to another if the starting place is higher
than the end place and all other places inbetween. You were asked to compute for each place the
longest horizontal distance Mouse Binna can fly starting from that particular place.

In subtask 5, the only thing that changed is that you were asked to output the sum of all these
numbers, as otherwise the output would be big and might take long to upload.

Subtask 1: The Uetliberg (15 Points)
In the first subtask, 𝑁 = 2 and so there are only two places. If there are only two places, one will
be lower than the other and from this place, you can’t fly anywhere. From the higher place, it’s
always optimal to fly to the lower place. This is easily done with a simple conditional, using a
constant amount of time and memory.
1 t = int(input())
2 for case in range(t):
3 n = int(input())
4 xs = list(map(int, input().split()))
5 hs = list(map(int, input().split()))
6 dx = xs[1] - xs[0]
7 if hs[0] < hs[1]:
8 print(f"Case #{case}: 0 {dx}")
9 else:

10 print(f"Case #{case}: {dx} 0")

Subtask 2: Paragliding at the Gornergrat (15 Points)
In this subtask, the heights are decreasing, meaning that we have ℎ𝑖 > ℎ 𝑗 for all 𝑖 < 𝑗. In this
subtask, we can realize that if we want to cover as much horizontal distance as possible, it is
always optimal to fly until the last place, since there is nothing stopping us. Thus the horizontal
distance that can be covered starting from place 𝑖 is 𝑥𝑛−1 − 𝑥𝑖 (using zero-based indexing).

This will take us 𝒪(𝑛) time and 𝒪(𝑛) memory.
1 t = int(input())
2 for case in range(t):
3 n = int(input())
4 xs = list(map(int, input().split()))
5 hs = list(map(int, input().split()))
6 print(f"Case #{case}: {' '.join([str(xs[-1] - x) for x in xs])}")

2/40

First Round, 2022/2023
Task paragliding

Subtask 3: Mount Kékes (15 Points)
In this subtask, the coordinates are increasing at first, and then decreasing. Such a sequence
is usually called a "unimodal" sequence. Also, let’s call the highest place the "peak" of the
mountain.

If we ignore the peak for a moment, we can make the same observation of subtask 2 for both
sides of the mountain: If you are on the left side of the peak, it’s optimal to fly to the rightmost
point since you can’t fly to the right, but nothing stops you from flying to the left as far as you
want. If you are on the right side of the peak, then you can’t fly to the left but it’s optimal to fly as
far as possible to the right as nothing stops you from flying further. It’s only the peak where
we actually need to make the decision in which direction to fly. But there we can just compare
the distance to the leftmost point with the distance to the rightmost point and choose the longer
one.

These observations just made can be expressed in an even more compact form: For each place
and direction, we can either not fly in that direction at all or we can fly all the way without being
stopped. Phrasing our observations that way allows us to find a neater implementation where
we don’t even care about finding the peak.

1 t = int(input())
2 for case in range(t):
3 n = int(input())
4 xs = list(map(int, input().split()))
5 hs = list(map(int, input().split()))
6 res = [
7 max(
8 xs[i] - xs[0] if i > 0 and hs[i - 1] < hs[i] else 0,
9 xs[-1] - xs[i] if i < n - 1 and hs[i] > hs[i + 1] else 0,

10)
11 for i in range(n)
12]
13 print(f"Case #{case}: {' '.join(map(str, res))}")

Subtask 4: The Mátra Mountain Range (25 points)
This subtask is the first subtask where we try to solve the general problem. Note that in this
subtask, we have 𝑁 ≤ 3000, so we can try to find a solution running in 𝒪(𝑁2).
First, we make the observation that if we start at place 𝑖, the furthest we can fly to the left is to
place 𝑗 + 1 where 𝑗 is maximal such that 𝑗 < 𝑖 and such that ℎ 𝑗 > ℎ𝑖 (or to place 0 if no such 𝑗
exists). Now suppose we start from place 𝑖. Then the easiest way to find out how far we can fly to
the left is by using a for loop starting from place 𝑖 going to the left, only stopping when we arrive
at a place which is higher than the place we started from.

We then do the same but flying to the right instead of flying to the left, and take the maximum of
the two answers for each place. Note that we can reuse the "flying to the left" part of our code for
the "flying to the right" by just reversing the two arrays (and by taking the absolute value of the
difference of the x-coordinates).
1 def run(n, xs, hs):
2 res = [0]*n
3 for i in range(n):
4 for j in range(i, -1, -1):
5 if hs[j] > hs[i]:
6 break
7 res[i] = abs(xs[i] - xs[j])
8 return res
9

10 t = int(input())
11 for case in range(t):
12 n = int(input())

3/40

First Round, 2022/2023
Task paragliding

13 xs = list(map(int, input().split()))
14 hs = list(map(int, input().split()))
15 res = [max(a, b) for a, b in zip(
16 run(n, xs, hs),
17 reversed(run(n,
18 list(reversed(xs)),
19 list(reversed(hs))
20))
21)]
22 print(f"Case #{case}: {' '.join(map(str, res))}")

Subtask 5: All of Hungary (30 points)
This subtask is almost the same as the last one, with the only differences being that 𝑁 can reach
106 now, so our previous solution is too slow, and that we now only need to print the sum of the
answers (since otherwise the output might get very big).

Recall that in our slower solution, we were trying to find for each 𝑖 the biggest 𝑗 < 𝑖 such that
ℎ 𝑗 > ℎ𝑖 . If we do this for each 𝑖 separately, this is very slow. But we can try to compute this for
all starting places at the same time. Let’s loop from left to right - the key idea is that if we are
currently at a place 𝑖 and place 𝑘 with 𝑘 < 𝑖 has ℎ𝑘 < ℎ𝑖 , then 𝑘 will never again be a place that
stops us from going further to the left, since if we’re able to fly over place 𝑖, we’re also able to fly
over place 𝑘. This leads us to what is commonly known as an ‘’monotone stack” or ‘’increasing
stack”: We can try to keep all the places that can still be stopping places in increasing order on a
stack, with the lowest one being on top of the stack. From our earlier observation, we can see that
these places are also ordered by decreasing x-coordinates. When we process place 𝑖, we can start
popping the places on top of the stack until the lowest place still on the stack has height higher
than ℎ𝑖 . Then the element on top of the stack is the place that stops us when we start from place
𝑖. Then finally, we push the current place on the stack. The code looks like this:
1 def run(n, xs, hs):
2 stack = [(-1, int(2e12))]
3 res = [0]*n
4 for i in range(n):
5 while stack[-1][1] < hs[i]:
6 stack.pop()
7 res[i] = abs(xs[stack[-1][0] + 1] - xs[i])
8 stack.append((i, hs[i]))
9 return res

10

11 t = int(input())
12 for case in range(t):
13 n = int(input())
14 xs = list(map(int, input().split()))
15 hs = list(map(int, input().split()))
16 res = [max(a, b) for a, b in zip(
17 run(n, xs, hs),
18 reversed(run(n,
19 list(reversed(xs)),
20 list(reversed(hs))
21))
22)]
23 print(f"Case #{case}: {sum(res)}")

Let’s think about the running time of this approach. At first, it seems like this is also 𝒪(𝑁2) as in
the while loop we could pop up to 𝑁 elements from our stack. The key idea here is that every
item that gets popped needs to be added to the stack first. Thus if we consider the total number
of times we pop something from the stack across all iterations of our outer for loop, it is 𝒪(𝑁) as
we only push 𝒪(𝑛) elements on our stack. Thus the total running time is 𝒪(𝑛).

4/40

First Round, 2022/2023
Task rubiksknob

Rubik’s Knob
Task Idea Johannes Kapfhammer
Task Preparation Johannes Kapfhammer
Description English Johannes Kapfhammer
Description German Bibin Muttappillil
Description French Mathieu Zufferey
Solution Johannes Kapfhammer
Correction

The setting for this task is a spiral spring with some integer value charge. Increasing the absolute
value of the charge by 1 has a cost of 1; decreasing the absolute value by 1 has a cost of 0. If the
charge is 𝑥, the indicator of the spiral spring points at position 𝑥 mod 𝑀 for a fixed 𝑀.

For practical implementation, it’s easiest to only consider the charge as the canonical state of the
spring and deduce all secondary properties from it. The position can be computed as 𝑥 mod 𝑀,
and the number of turns can be computed by ⌈𝑥/𝑀⌉ (rounded towards 0).

Subtask 1: Computing the number of wind-ups (17 Points)
The first subtask is about computing the number of operations given a sequence of positions and
whether to move between them with left or right rotations.

For moving between two positions, there are six cases and we can compute the cost separately
for them:

a0----->a1 |
a1<-----a0 |

b0------|----->b1
b1<-----|------b0

| c0----->c1
| c1<-----c0

-------------0-------------->

a) start and end negative:
max(0, |𝑎0 | − |𝑎1 |) (costs only if we increase
the absolute value)

b) start positive/end negative or start nega-
tive/end positive:
|𝑏1 | (moving from 𝑏0 to 0 is free, rest has
cost 1)

c) start and end negative:
max(0, |𝑐0 | − |𝑐1 |) (costs only if we increase
the absolute value)

All that remains now is to translate the “L” or “R” instruction to an absolute charge value – we
do this by setting the target charge to the correct position with the same number of turns, and
then adjust based on absolute value.
1 def parse():
2 n, m = map(int, input().split())
3 xs = list(map(int, input().split()))
4 dirs = input().strip()
5 validate(n, m, xs, dirs)
6 return m, xs, dirs
7

8 def segment_cost(a, b):
9 return max(0, abs(b) - (abs(a) if (a>0)==(b>0) else 0))

10

11 def solve(m, xs, dirs):
12 ans = 0
13 pos = 0
14 for to, dir in zip(xs, dirs):
15 nxt = (pos//m)*m + to
16 if nxt < pos and dir == 'R':
17 nxt += m

5/40

First Round, 2022/2023
Task rubiksknob

18 elif nxt > pos and dir == 'L':
19 nxt -= m
20 ans += segment_cost(pos, nxt)
21 pos = nxt
22 assert pos%m == to
23 return ans
24

25 if __name__ == '__main__':
26 for case in range(int(input())):
27 print(f"Case #{case}:", solve(*parse()))

General Observations
The following subtasks ask us to compute the minimal number of operations for a given
sequence 𝑥0 , . . . , 𝑥𝑛−1. Before we take a look into the subtasks, we can make some general
observations.

Claim 1 We can add 0 to the beginning of the sequence and 0 to the end of the sequence. The cost of an
optimal solution will be the same.

Proof. We already start at 0 so we get this for free. At the end, if we are somewere other than 0 we
can always “fall back” to 0 using the remaining charge we have, without additional cost either. □
Let 𝑥0 , 𝑥1 , . . . , 𝑥𝑛−1 be the sequence we are interested in. This claim allows us to assume without
loss of generality that 𝑥0 = 0 and 𝑥𝑛−1 = 0. (If this is not the case prepend and append 0 – which
makes 𝑛 at most larger by 2.)

It will turn out to be useful to not look at the sequence 𝑥0 , . . . , 𝑥𝑛−1 directly but instead at the
deltas 𝑑𝑖 = (𝑎𝑖+1 − 𝑎𝑖) mod 𝑚.

Claim 2 The sum of all deltas is divisible by 𝑚, i.e.
(∑𝑛−1

𝑖=0 𝑑𝑖

)
mod 𝑚 = 0.

Proof. Since we added 0 to the start and the end of the sequence we start at 0 and end at 0. This
is only possible when we do some number of full turns which implies the sum of deltas is a
multiple of 𝑚. □

Claim 3 Without loss of generality 𝑑𝑖 ≠ 0 for all 𝑖. Or in other words, any deltas of value 0 can be ignored.

Proof. We can fullfil them by standing still, so the cost is the same if we take them out of the
sequence. □

Claim 4 In order to move by a delta of 𝑑𝑖 we can either increase the charge by 𝑑𝑖 or decrease it by 𝑛 − 𝑑𝑖 .
Proof. This follows directly from the definitions. Turning right increases the charge by 𝑑𝑖 . Turning
left means we have to move the opposite side, which has cost 𝑛 − 𝑑𝑖 . □

Subtask 2: Beginner Puzzles (16 Points)
This subtask was a special case where the 𝑥𝑖 are increasing.

The first idea that comes to mind would be to solve this with purely right turns “RRR...RRRR”
but luckily(?) the example shows that this is not always optimal.

If we go from 0 to 𝑚 with purely right turns we will have a charge of 𝑚 which we are “wasting”.
In hindsight we want to spend this charge on one of the deltas. And in fact we can do.

Let the deltas be 𝑑0 , 𝑑1 , . . . , 𝑑𝑖−1 , 𝑑𝑖 , 𝑑𝑖+1 , . . . , 𝑑𝑛−1. We can do the first 𝑑0 , 𝑑1 , . . . , 𝑑𝑖−1 with right
turns. Then we can do 𝑑𝑖 with a single left turn. And then we do 𝑑𝑖+1 , . . . , 𝑑𝑛−1 with a right turns
again.

What are the costs of doing so? Now the ideas of Claim 2 come in handy! We can see that∑𝑛−1
𝑖=0 𝑑𝑖 = 𝑛. The solution will look like this:

6/40

First Round, 2022/2023
Task rubiksknob

-q 0 p
[==============>]

[<======================]
[======>]

We have to pay the part from 0 to 𝑝 = 𝑑0 + 𝑑1 + . . . + 𝑑𝑖−1, then we drop down for free from
𝑝 to 0. Then we have to pay the part from 0 to −𝑞. And lastly we get back from −𝑝 to 0 with
𝑑𝑖+1 , . . . , 𝑑𝑛−1. But that allows us to compute 𝑞 as 𝑞 = 𝑑𝑖+1 + · · · + 𝑑𝑛−1. So the total sum is

𝑝 + 𝑞 = (𝑑0 + 𝑑1 + . . . + 𝑑𝑖−1) + 𝑑𝑖+1 + · · · + 𝑑𝑛−1 = 𝑚 − 𝑑𝑖

For what 𝑑𝑖 is 𝑚 − 𝑑𝑖 minimal? For the biggest one of course!

The following code does exactly that, it computes the deltas with[(y-x)%m for x, y in zip(xs, xs[1:])]
and then takes the max(...) of them.
1 def parse():
2 n, m = map(int, input().split())
3 xs = list(map(int, input().split()))
4 return m, xs
5

6 def solve(m, xs):
7 xs = [0] + xs + [0]
8 return (m - max([(y-x)%m for x, y in zip(xs, xs[1:])]))%m
9

10 if __name__ == '__main__':
11 for case in range(int(input())):
12 print(f"Case #{case}:", solve(*parse()))

Subtask 3: Advanced: Small Puzzles (23 Points)
Subtask 4: Expert: Large Puzzles (44 Points)
This time we have to solve arbitrary sequences.

For this we need another set of observations:

Claim 5 The optimal solution starts and ends with a charge of 0.

Proof. We already know we start with a charge of 0 so we only need to look at whether we also
end at 0.

Proof by contradiction: Say we end up with a charge of ≥ 𝑚 in the end (recall that by by Claim 1
we end up at position 0 so the charge must be at least 𝑚). Take the last move that did cost us
some operations and go the opposite direction. Doing so will just unwind the spring and cost 0
charge (because we have at least 𝑚 charge left we can pay this fully with the remaining charge),
so the original one was not optimal. (Analogously with ≤ −1 turn.) □

Now another helper claim that helps us simplify our calculations later:

Claim 6 If some sequence of operations starts and ends with the same charge 𝑐, the cost is the same for
any other charge 𝑐′.

Proof. Let’s for a moment just compare a base charge of 𝑐 and a base charge of 𝑐 + 1.

Say we start and end at 𝑐.

-1 0 c c+1

| | |=======>|
|<====================|
|==>|

<=============|

7/40

First Round, 2022/2023
Task rubiksknob

=========>|
|======>|

What happens when we shift the start from 𝑐 to 𝑐 + 1? The following operations still cost the
same:

• Originally starting from ≥ 0 and going right costs 1.

• Originally starting from > 0 and going left costs 0.

• Originally starting from ≤ −1 and going left costs 1.

• Originally starting from < −1 and going right costs 0.

And the following operations now cost something diffent:

(a) Originally starting from −1 and going right did cost 0, now it will cost 1.

(b) Originally starting from 0 and going left did cost 1, now it will cost 0.

Note that since we start and end at the same position, the number of operations (a) must be the
same as the number of operations (b). Which means that the total cost will still be the same.

So if 𝑐 costs the same as 𝑐 + 1, and 𝑐 + 1 costs the same as 𝑐 + 2 then by induction all charges ≥ 𝑐
cost the same. By symmetry the same argument holds for 𝑐 and 𝑐 − 1, so it will be the same cost
for all 𝑐. □

This gives us a pretty useful claim:

Claim 7 Given the deltas 𝑑0 , . . . , 𝑑𝑖 , 𝑑𝑖+1 , . . . , 𝑑 𝑗 , 𝑑𝑗+1 , . . . , 𝑑𝑛−1 let 𝑅 be the set of indices where we go
right. Then the total cost is

∑
𝑖 ∈ 𝑅𝑑𝑖 .

Proof. Because Claim 5 allowed us to assume we start and end at 0, by the previous claim we can
now shift the base charge to a large value (say

∑
𝑑𝑖) without affecting the total cost. This means

that all left turns are free and all right turns cost their value 𝑑𝑖 . □

As a side remark, this leads to the following shorter solution for subtask 1 which would be pretty
hard to understand without understanding Claim 7:
1 def solve(m, xs, dirs):
2 ans = 0
3 pos = 0
4 for to, dir in zip(xs, dirs):
5 if delta == 0: continue
6 delta = (to - pos)%m # delta will be in range [0..m)
7 if dir == 'R':
8 pos += delta
9 ans += delta

10 else:
11 pos += delta - m
12 assert pos%m == to
13 ans += max(0, -pos)
14 return ans

With that out of the way, let’s go to the key observation for this task:

Claim 8 We can reorder the deltas without changing the total cost of the solution.

Proof. This is a direct consequence from Claim 7: the cost of a given solution is only the cost of
those deltas where we decide to go right.

We can change the order of the deltas as we want, as long as we go right for the same deltas as
before the total sum does not change. □

If the order does not matter we can always assume the sequence is sorted and now we can just do
that.

8/40

First Round, 2022/2023
Task rubiksknob

Claim 9 Let the deltas be sorted (𝑑0 ≤ 𝑑1 ≤ · · · ≤ 𝑑𝑘−1). Let 𝑗 be the number of times we go right in an
optimal solution. The optimal solution will go right for the first 𝑗 deltas (𝑑0 , . . . , 𝑑 𝑗−1) and will go left for
the last 𝑛 − 𝑗 deltas (𝑑 𝑗 , . . . , 𝑑𝑘−1).

Proof. Again proof by contradiction. Assume otherwise, meaning there are two deltas 𝑝 < 𝑞 such
that we go left at 𝑝 and right at 𝑞. Since 𝑑𝑝 < 𝑑𝑞 (we assumed the deltas are sorted) this will make
the solution better, leading to a contradiction. □

Now how to find the optimal 𝑗?

Claim 10 The optimal 𝑗 is such that

(𝑑0 + · · · + 𝑑 𝑗−1) + (𝑑 𝑗 − 𝑚 + · · · + 𝑑𝑘−1 − 𝑚) = 0.

Proof.

• there is always such a 𝑗: We know by Claim 5 that
∑
𝑑𝑖 = 0, therefore the sum (𝑑0 + · · · +

𝑑 𝑗−1) + (𝑑 𝑗 − 𝑚 + · · · + 𝑑𝑘−1 − 𝑚) is divisible by 𝑛 for any 𝑗. Increasing (resp. decreasing)
𝑗 by 1 changes the solution by 𝑚 (resp −𝑚). If 𝑗 = 0 the sum is ≤ 0 and if 𝑗 = 𝑛 it is ≥ 𝑚.
Therefore for some 𝑗 in the middle the sum is 0.

• any other value ≠ 𝑗 is worse: By Claim 5 we know that any solution that does not start and
end at 0 is non-optimal.

• there is an optimal solution for this 𝑗: Then, Claim 9 shows us that given this 𝑗 we can find an
optimal solution by taking the smallest 𝑗 deltas as right turns.

□

With all those observations out of the way, here the full solution:
1 def solve(m, xs):
2 xs = [0] + xs + [0]
3 deltas = sorted([(x-y)%m for x, y in zip(xs, xs[1:])])
4 rsum = 0
5 lsum = sum(m - d for d in deltas)
6 for d in deltas:
7 rsum += d
8 lsum -= m - d
9 if lsum == rsum:

10 return rsum

Running time is 𝒪(𝑛 log 𝑛) since we need to sort, space usage is 𝒪(𝑛).

9/40

First Round, 2022/2023
Task boulders

Boulders
Task Idea Daniel Rutschmann
Task Preparation Timon Gehr
Description English Timon Gehr
Description German Charlotte Knierim
Description French Florian Gatignon
Solution Timon Gehr
Correction

In this task, there is a grid with 𝑁 rows and 𝑀 columns. You can execute a number of operations:
For each operation, you can either roll a boulder down a row (left to right) or a column (top to
bottom). The boulder will keep rolling into the original direction until it hits the other border of
the grid or another boulder. It will then always stop on some grid square.

You are given a grid where some grid squares are occupied by a boulder. You have to determine
whether it is possible to obtain the given pattern of boulders using a sequence of operations as
described above.

Subtask 1: Subtask 1 (10 Points)
In this subtask, we have 𝑁 = 1. I.e., there is only a single row. We can simply roll a boulder down
each column that should have one. In this way, we can obtain an arbitrary pattern of boulders.
(This is not always the only way to generate a given pattern, but it always works.)

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int main() {
5 int T;
6 cin >> T;
7 for (int t = 0; t < T; t++) {
8 int N, M;
9 cin >> N >> M;

10 assert(N == 1); // N is 1 in this subtask
11 string grid;
12 cin >> grid; // read a single line
13 cout << "Case #" << t << ": Yes\n"; // always possible
14 for (int i = 0; i < M; i++) {
15 if (grid[i] == '#') { // boulder in column i
16 cout << "C " << i << "\n"; // put it
17 }
18 }
19 }
20 }

The running time of this solution is Θ(𝑀), as we perform a constant number of operations per
column.

Subtask 2: Subtask 2 (25 points)
In this subtask, we have 𝑁 = 2. I.e., there are exactly two rows, a top row and a bottom row. We
can process the columns from right to left. There are now a few simple observations:

• If a column is empty, we don’t have to do anything.

• If a column 𝑖 has a boulder at the bottom, we can simply roll a boulder down column 𝑖.

• If a column 𝑖 has two boulders, we can additional roll a second boulder down column 𝑖.

10/40

First Round, 2022/2023
Task boulders

• The only tricky case is if a column 𝑖 has a boulder in the top row but not in the bottom row.
In this case, we can’t roll any boulder down column 𝑖, because otherwise we would end
up with a boulder in the bottom row in that column. Therefore, the only possible way to
place that boulder is to roll a boulder down the top row. This boulder will always be able
to reach column 𝑖, but it can only stop there in case column 𝑖 is the last column (𝑖 = 𝑀 − 1),
or there already is a boulder in the top row of column 𝑖 + 1. In case there should indeed be
a boulder at that position, we have already placed it (because we are processing columns
from right to left). Otherwise, it will be impossible to place the boulder and to obtain the
given pattern, so we can abort.

In our implementation, we first check whether it is possible to place the boulders and we only
place them if it is actually possible.
1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int main() {
5 int T;
6 cin >> T;
7 for (int t = 0; t < T; t++) {
8 int N, M;
9 cin >> N >> M;

10 assert(N == 2); // N is 2 in this subtask
11 string top, bot;
12 cin >> top; // read top row
13 cin >> bot; // read bottom row
14 // we first check if it is possible
15 bool possible = true;
16 for (int i = 0; i < M; i++) {
17 if (top[i] == '#' && bot[i] == '.') {
18 possible &= i == M - 1 || top[i + 1] == '#';
19 }
20 }
21 cout << "Case #" << t << ": " << (possible ? "Yes" : "No") << "\n";
22 if (possible) {
23 for (int i = M - 1; i >= 0; i--) { // from last to first column
24 if (bot[i] == '#') { // boulder at bottom in column i
25 cout << "C " << i << "\n"; // put it
26 if (top[i] == '#') { // boulder at top in column i
27 cout << "C " << i << "\n"; // put it
28 }
29 } else { // no boulder at bottom in column i
30 if (top[i] == '#') { // but there is one at the top
31 assert(i == M - 1 || top[i + 1] == '#');
32 cout << "R 0\n"; // put it
33 }
34 }
35 }
36 }
37 }
38 }

The running time of this solution is still Θ(𝑀), as we perform a constant number of operations
per column.

Subtask 3: Subtask 3 (30 points)
(Note that the solution for subtask 4 is possibly easier to understand than the solution for subtask
3.)

In this subtask, there are at most 20 boulders. (But the number of rows and columns can be
big.)

For a solution that exploits the low number of boulders in this subtask, we will characterize the
conditions under which we can place a boulder. To be able to place a single boulder:

11/40

First Round, 2022/2023
Task boulders

• It has to be supported:

– Either it has to be in the last row or in the last column.

– Or there needs to be a boulder already placed at the spot immediately to the right or
at the spot immediately to the bottom.

• It can not be blocked: We cannot place a boulder in case there is already another boulder in
the same row at a lower column index as well as another one in the same column at a lower
row index. Otherwise we can place it.

Those conditions taken together are necessary and sufficient. If we are given a permutation
of the boulders, we can check whether we can place the boulders in that order using these
conditions, one-by-one for each boulder. Unfortunately, there are up to 20! = 2432902008176640000
permutations of 20 boulders. We cannot check all of those in just 5 minutes (it would likely take
multiple decades), so we need to be a little bit more clever.

We can optimize this idea as follows using dynamic programming: For each set boulders, we
will compute whether it is possible to place that specific set. In particular, this will allow us to
determine whether it is possible to place all boulders. To compute the result for a given set, we
will be able to use results for its strict subsets if we compute the results in a suitable order.

The recurrance for our dynamic programming algorithm is as follows:

• Base case: It is always possible to place the empty set of boulders (by running zero
operations).

• Step: For a non-empty set of boulders, if it is possible to place them, there in particular has
to be one boulder we can place last. Therefore, we can check for each boulder individually
whether it can be placed last if all the other boulders have already been placed. For this,
we can make use of the conditions laid out above. If a boulder can be placed last, and it is
possible to place all the other boulders in the set before it, it is possible to place our set,
otherwise it is not.

The implementation uses a bit-mask encoding of sets of boulders: A set is encoded as an integer𝑚
such that the 𝑖-th boulder is in the set if and only if the 𝑖-th least significant bit of 𝑚 is one.

If we can determine that it is possible to place all boulders, we can then use the intermediate
results in the DP table to reconstruct one of the solutions.
1 #include <bits/stdc++.h>
2 using namespace std;
3

4 struct Boulder {
5 int row;
6 int col;
7 };
8

9 int main() {
10 int T;
11 cin >> T;
12 for (int t = 0; t < T; t++) {
13 int N, M;
14 cin >> N >> M;
15 // create a list of all boulders:
16 vector<Boulder> boulders;
17 for (int i = 0; i < N; i++) {
18 string row;
19 cin >> row;
20 for (int j = 0; j < M; j++) {
21 if (row[j] == '#') {
22 boulders.push_back(Boulder{i, j});
23 }
24 }
25 }

12/40

First Round, 2022/2023
Task boulders

26 int K = boulders.size();
27 assert(K <= 20);
28 // check if we can place a new boulder if
29 // some set of boulders encoded in mask
30 // has already been placed
31 auto check = [&](Boulder new_boulder, int mask) -> tuple<bool, bool> {
32 bool supported_down = new_boulder.row == N - 1;
33 bool supported_right = new_boulder.col == M - 1;
34 bool blocked_top = false;
35 bool blocked_left = false;
36 for (int i = 0; i < boulders.size(); i++) {
37 if (!(mask & (1 << i))) {
38 // ignore boulders that have not been placed already
39 continue;
40 }
41 // can we stack the new boulder on top of boulder i?
42 // does boulder i prevent us from placing the new boulder?
43 if (boulders[i].row == new_boulder.row) {
44 supported_right |= new_boulder.col + 1 == boulders[i].col;
45 blocked_left |= boulders[i].col <= new_boulder.col;
46 }
47 if (boulders[i].col == new_boulder.col) {
48 supported_down |= new_boulder.row + 1 == boulders[i].row;
49 blocked_top |= boulders[i].row <= new_boulder.row;
50 }
51 }
52 auto row_placeable = supported_right && !blocked_left;
53 auto col_placeable = supported_down && !blocked_top;
54 return make_tuple(row_placeable, col_placeable);
55 };
56 vector<bool> table(1 << K, false);
57 // it's always possible to place
58 // the empty set of boulders:
59 table[0] = true;
60 for (int mask = 1; mask < (1 << K); mask++) {
61 // try to find a boulder we can place last
62 for (int last = 0; last < K; last++) {
63 if (!(mask & (1 << last))) {
64 // ignore boulders that have not been placed
65 continue;
66 }
67 int others = mask & ~(1 << last);
68 if (table[others]) {
69 // it's possible to place all other boulders
70 // check if we can place boulder last:
71 auto [row_placeable, col_placeable] = check(boulders[last], others);
72 bool can_place = row_placeable || col_placeable;
73 if (can_place)
74 table[mask] = true;
75 }
76 }
77 }
78 int mask = (1 << K) - 1; // mask with all boulders
79 bool possible = table[mask];
80 cout << "Case #" << t << ": " << (possible ? "Yes" : "No") << "\n";
81 if (possible) {
82 // we have to reconstruct a solution
83 vector<pair<char, int>> solution_reversed;
84 while (mask) {
85 // try to find a boulder we can place last
86 bool found = false;
87 for (int last = 0; last < K; last++) {
88 if (!(mask & (1 << last))) {
89 // ignore boulders that have been processed
90 continue;
91 }
92 int others = mask & ~(1 << last);
93 if (table[others]) {

13/40

First Round, 2022/2023
Task boulders

94 auto [row_placeable, col_placeable] = check(boulders[last], others);
95 if (row_placeable) {
96 solution_reversed.push_back({'R', boulders[last].row});
97 mask = others;
98 found = true;
99 break;

100 } else if (col_placeable) {
101 solution_reversed.push_back({'C', boulders[last].col});
102 mask = others;
103 found = true;
104 break;
105 }
106 }
107 }
108 assert(found);
109 }
110 assert(solution_reversed.size() == K);
111 for (int i = K - 1; i >= 0; i--) {
112 cout << solution_reversed[i].first << " " << solution_reversed[i].second
113 << '\n';
114 }
115 }
116 }
117 }

The running time of this solution is 𝑂(𝑁 ·𝑀 + 2𝐾 · 𝐾2). First, we read the input in time 𝑂(𝑁 ·𝑀).
Then, we are iterating over 2𝐾 sets of boulders. For each of those sets, we check up to 𝐾 elements,
and for each element, we compute in 𝑂(𝐾) time whether we can place the boulder given by that
element as the last boulder in the set by iterating over the set once.

(Note that we could easily optimize this solution to time 𝑂(𝑁 · 𝑀 + 2𝐾 · 𝐾), but this was not
necessary to score full points for this subtask.)

Subtask 4: Subtask 4 (30 points)
Recall the observations from subtask 3:

To be able to place a single boulder:

• It has to be supported:

– Either it has to be in the last row or in the last column.

– Or there needs to be a boulder already placed at the spot immediately to the right or
at the spot immediately to the bottom.

• It can not be blocked: We cannot place a boulder in case there is already another boulder in
the same row at a lower column index as well as another one in the same column at a lower
row index. Otherwise we can place it.

If we are given a permutation of the boulders, we can check whether we can place the boulders
in that order using these conditions, one-by-one for each boulder. In our solution to subtask 3,
we constructed permutations using dynamic programming. However, it turns out that this is not
necessary. There are in fact simple ways to generate permutations of boulders that always work
in case it is possible to place boulders in the given pattern at all.

The constraints suggest an ordering of boulders according to position, such that boulders at
smaller positions are placed first:

• (row + 1, col) < (row, col). I.e., the boulder at position (row, col) should be placed after the
boulder in position (row + 1, col).

• Similarly, (row, col + 1) < (row, col).

14/40

First Round, 2022/2023
Task boulders

This makes sense because a boulder at (row, col) may rely on a boulder at (row + 1, col) or
(row, col + 1) for support. Therefore, we should place the supporting boulders first if we
can.

Conveniently, those constraints also ensure that boulders are placed in an order where no boulder
is ever blocked from reaching its position by another boulder.

There are multiple ways to satisfy those constraints. A simple way is to iterate over both rows and
columns backwards using nested for loops. As the ordering ensures no boulder is ever blocked by
another boulder (neither in rows now in columns), we will only need to check that each boulder
is supported. (Either by the right or bottom border of the grid, or by another boulder.)

In our implementation, we first check whether it is possible to place the boulders and we only
place them if it is actually possible.
1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int main() {
5 int T;
6 cin >> T;
7 for (int t = 0; t < T; t++) {
8 int N, M;
9 cin >> N >> M;

10 vector<string> grid(N);
11 for (int i = 0; i < N; i++) {
12 cin >> grid[i];
13 }
14 // we first check if it is possible
15 bool possible = true;
16 // it suffices to check that each boulder is supported
17 // by the grid border or another boulder.
18 // if so, we can then place them in a suitable order,
19 // such that no boulder blocks another boulder from
20 // reaching its position.
21 for (int i = 0; i < N; i++) {
22 for (int j = 0; j < M; j++) {
23 if (grid[i][j] == '#') {
24 // found a boulder, check if it is supported
25 bool supported_down = i == N - 1 || grid[i + 1][j] == '#';
26 bool supported_right = j == M - 1 || grid[i][j + 1] == '#';
27 possible &= supported_down | supported_right;
28 }
29 }
30 }
31 cout << "Case #" << t << ": " << (possible ? "Yes" : "No") << "\n";
32 if (possible) {
33 // possible, place boulders
34 for (int i = N - 1; i >= 0; i--) {
35 for (int j = M - 1; j >= 0; j--) {
36 if (grid[i][j] == '#') {
37 // found a boulder
38 bool supported_down = i == N - 1 || grid[i + 1][j] == '#';
39 bool supported_right = j == M - 1 || grid[i][j + 1] == '#';
40 if (supported_down) {
41 cout << "C " << j << "\n";
42 } else if (supported_right) {
43 cout << "R " << i << "\n";
44 } else {
45 assert(false);
46 }
47 }
48 }
49 }
50 }
51 }
52 }

15/40

First Round, 2022/2023
Task boulders

The running time of this solution is still Θ(𝑁 ·𝑀), as we perform a constant number of operations
for each grid cell.

16/40

First Round, 2022/2023
Task cardgame

Cardgame
Task Idea Joël Huber
Task Preparation Luc Haller
Description English Luc Haller
Description German Charlotte Knierim
Description French Mathieu Zufferey
Solution Luc Haller
Correction

Summary
You are given two lists of 𝑁 cards, one yours and one Stofl’s. The union of the lists contains each
number from 1 to 2𝑁 exactly once. In some of the subtasks, the cards additionally have different
scores. You’re playing a game against Stofl, where a higher card beats a lower card. Stofl already
told you in which order he’s going to play all his cards. You now have to decide on an order for
your cards.

We can notice that what matters is only which pairs of cards we match up, and the actual order
of the turns doesn’t matter. This allows us to reorder Stofl’s list in a way that makes it simpler for
us to determine a strategy.

Subtask 1: Subtask 1 (20 Points)
In the first subtask, you have to find an order in which you can play your cards such that you win
each turn, or determine that there is no such order. Consider the strategy where we sort Stofl’s
and our list of cards each in ascending order and play our lowest card against Stofl’s lowest card,
our second lowest against his second lowest, and so on. We can see that if we don’t win every
turn with this strategy, there’s no way to win each turn: If the 𝑖-th position is the first one where
our card is lower than Stofl’s, we can’t do anything about it: Playing a lower card in its place
instead will also lose the turn, and playing a higher card in its place we would have to play the
𝑖-th card against a higher one of Stofl’s cards, where it would also lose.

Thus, sorting the two lists and comparing the numbers at each index is enough, and will take
𝒪(𝑁 log𝑁) time and 𝒪(𝑁) memory.
1 t = int(input())
2 for case in range(t):
3 n = int(input())
4 as = list(map(int, input().split()))
5 bs = list(map(int, input().split()))
6 as.sort()
7 bs.sort()
8 winall = True
9 for i in range(n):

10 if as[i] > bs[i]:
11 winall = False
12 break
13 print(f"Case #{case}:", f"Yes {' '.join(map(str, bs))}" if winall else "No")

Subtask 2: Subtask 2 (20 Points)
In this subtask, you have to find the worst possible way to play. Since the lists are quite long, we
only ask you to print the number of turns you lose.

We’re trying to lose as many turns as possible, so we want to get rid of our high cards. This leads

17/40

First Round, 2022/2023
Task cardgame

to the idea that whenever we can’t avoid winning a turn, we want to play our highest remaining
card: We certainly won’t be able to win fewer turns by keeping a higher card for later turns than
necessary. With this modification, the greedy strategy from subtask 1 of matching up the sorted
lists still works.
1 t = int(input())
2 for case in range(t):
3 n = int(input())
4 as = list(map(int, input().split()))
5 bs = list(map(int, input().split()))
6 as.sort()
7 bs.sort()
8 won = 0
9 for i in range(n):

10 if as[i] < bs[i-won]:
11 # match up as[i] and bs[n-1-won]
12 won += 1
13 print(f"Case #{case}: {won}")

Subtask 3: Subtask 3 (20 Points)
In this subtask, you’re trying again to win. Now each of your cards has a score attached (but
Stofl’s cards don’t). Your total score is the sum of the scores attached to the cards with which you
win a turn.

We still consider Stofl’s cards in ascending sorted order. Since we now want to win, it’s best to
lose the turns against Stofl’s highest cards, i.e. if one of our cards can’t win its turn, it’s best to
play it against Stofl’s highest remaining card (the opposite of what we did in subtask 2). It’s also
again good to win turns with the lowest remaining cards we have, and keep the higher ones to
beat Stofl’s higher cards. (That’s the strategy from subtask 1.) But because there’s now a score
attached, not all cards are equivalent, and thus it might have been better to win the turn with a
higher card if it has a higher score and we can’t win later turns with it. To adjust for this, we’ll
"retroactively" exchange higher cards which would lose their turn with lower cards with a lower
score which won their turn. That is, as we go over the sorted lists, we keep track of the scores of
the cards we already assigned to a winning turn, and consider replacing the one with the lowest
score with the current card.

We again only scanned over the lists once. In addition to that we have the cost of sorting, and the
cost of keeping track of the smallest element. We can use a priority queue or multiset for that.
In total that still takes 𝒪(𝑁 log𝑁) time and 𝒪(𝑁) memory (or 𝒪(𝑁 log𝑁) memory if we use a
multiset).
1 #include <bits/stdc++.h>
2 using namespace std;
3

4 using vi=vector<int>;
5 using pii=pair<int,int>;
6 using vpii=vector<pii>;
7

8 void solve() {
9 int n; cin >> n;

10 vi as(n);
11 vpii bs(n);
12 for (int& ai : as) cin >> ai;
13 for (auto& [bi, _] : bs) cin >> bi;
14 for (auto& [_, si] : bs) cin >> si;
15 sort(as.begin(), as.end());
16 sort(bs.begin(), bs.end());
17 multiset<int> won;
18 int ai = 0;
19 for (int i=0; i<n; ++i) {
20 if (bs[i].first > as[ai]) {
21 won.insert(bs[i].second);

18/40

First Round, 2022/2023
Task cardgame

22 ++ai;
23 continue;
24 }
25 if (!won.empty() && bs[i].second > *won.begin()) {
26 won.erase(won.begin());
27 won.insert(bs[i].second);
28 }
29 }
30 int sum = 0;
31 for (int x : won) sum += x;
32 cout << sum << "\n";
33 }
34

35 signed main() {
36 int t; cin >> t;
37 for (int i=0; i<t; ++i) {
38 cout << "Case #" << i << ": ";
39 solve();
40 }
41 }

Subtask 4: Subtask 4 (20 Points)
In this subtask, Stofl’s cards have scores while yours don’t.

So this time it doesn’t matter with which cards we win turns, just which subset of Stofl’s cards
we beat. So we can use highest cards we have to win the best turns we can with them (if we
skipped a higher card and used a lower one, we could equivalently win that turn with the higher
card instead). In an optimal solution we always win the maximum number of turns we can. We
can find a maximal set of turns to win by doing a greedy scan over both card lists in reverse
order, and whenever we can’t beat Stofl’s highest remaining card we throw away our lowest
remaining card, otherwise we use the highest remaining card. This is basically the opposite of
the solution to subtask 2. This maximal set of turns isn’t necessarily optimal though: It could be
better to replace one of Stofl’s cards we win against with a lower card with a higher score. This
just requires the same approach as in Subtask 3, of keeping track of the card scores we beat and
potentially replacing the lowest one as we go.
1 // the rest of the solution is analogous to the one in Subtask 3
2 sort(as.begin(), as.end());
3 sort(bs.begin(), bs.end());
4 multiset<int> won;
5 int bind = n-1;
6 for (int i=n-1; i>=0; --i) {
7 if (bs[bind] > as[i].first) {
8 won.insert(as[i].second);
9 --bind;

10 continue;
11 }
12 if (!won.empty() && as[i].second > *won.begin()) {
13 won.erase(won.begin());
14 won.insert(as[i].second);
15 }
16 }

Subtask 5: Subtask 5 (20 Points)
In the final subtask, all cards have scores. The basic ideas from the other solutions are still
applicable, but since both our and Stofl’s cards have scores, the logic for improving earlier turns
becomes a bit more complex.
1 sort(as.begin(), as.end());
2 sort(bs.begin(), bs.end());
3 priority_queue<int> stofl_skipped; // The scores of Stofl's cards in turns we haven't won.

19/40

First Round, 2022/2023
Task cardgame

4 priority_queue<int, vi, std::greater<int>> our_won; // The scores of our cards in turns we've won.
5 vi stofl_won; // The scores of Stofl's cards in turns we've won.
6 int aind = 0;
7 for (int i=0; i<n; ++i) {
8 if (aind < n && bs[i].first > as[aind].first) {
9 // Our current (i-th) card beats Stofl's current (aind-th) card.

10 our_won.push(bs[i].second);
11 for (; aind < n && bs[i].first > as[aind].first; ++aind) {
12 // There may be a whole range of Stofl's cards we could beat with our i-th card.
13 stofl_skipped.push(as[aind].second);
14 }
15 // We use our i-th card to win against Stofl's highest-scoring card (with a lower value) which we haven't won yet.
16 stofl_won.push_back(stofl_skipped.top());
17 stofl_skipped.pop();
18 } else if (!stofl_skipped.empty()) {
19 // Our i-th card doesn't beat Stofl's aind-th card, but it can still beat
20 // all of Stofl's cards which we put in `stofl_skipped` for earlier i.
21 stofl_won.push_back(stofl_skipped.top());
22 stofl_skipped.pop();
23 our_won.push(bs[i].second);
24 } else if (!our_won.empty() && bs[i].second > our_won.top()) {
25 // We can't win any additional turn with our i-th card, but it has a
26 // higher score than the worst lower-valued card we won a turn with,
27 // so we can improve that turn by swapping them.
28 our_won.pop();
29 our_won.push(bs[i].second);
30 }
31 }
32 long long sum = 0;
33 while (!our_won.empty()) {
34 sum += our_won.top();
35 our_won.pop();
36 }
37 for (int x : stofl_won) sum += x;
38 cout << sum << "\n";

20/40

First Round, 2022/2023
Task palatinalcrypt

Palatinal Crypt
Task Idea Tobias Feigenwinter and Daniel Rutschmann
Task Preparation Tobias Feigenwinter
Description English Tobias Feigenwinter and Johannes Kapfhammer
Description German Priska Steinebrunner
Description French Florian Gatignon
Solution Tobias Feigenwinter
Correction Charlotte Knierim and Jan Schär

In this task, you were asked to prepare a crypt to open it for the public. The crypt is a 𝑁 ×𝑀
grid of rooms and you should connect some of the rooms (by tearing down some of the walls).
Afterwards, in every subtask except for the first, all of the following conditions should hold:

1. The rooms should be connected, i.e. it should be possible to reach every room from every
other room.

2. You may only tear down strictly less walls than there are rooms, i.e. you may tear down at
most 𝑁 ×𝑀 walls.

3. No room may have all four walls removed, and no room may have exactly two walls
removed.

You were asked to output your crypt layout in an ASCII layout like the following:

o.o.o
|.|.|
o-o-o
|...|
o-o.o

In this representation, the letter o represents a room of the crypt and the pipe characters and
minuses represent a connection between two of the rooms. The dots do not have any particular
meaning, but are used as spacing such that the other characters are at the correct position.

Subtask 1: Klotild Wing
In this subtask, the third condition in the list above is relaxed: It is allowed to remove exactly two
walls of a room. It still is not allowed to remove exactly four walls, and the other two conditions
also hold.

To solve this subtask, we can find some easy pattern such as the following:

o-o
|.|
o.o

You can extend this pattern to the right by repeating the red and purple parts, and to the bottom
by repeating the blue and purple parts. If we repeat the red and purple parts four times and the
blue and purple parts two times, we get the following 3 × 5 crypt:

o-o-o-o-o
|.|.|.|.|
o.o.o.o.o
|.|.|.|.|
o.o.o.o.o

21/40

First Round, 2022/2023
Task palatinalcrypt

This also solves 1 ×𝑀 crypts: for this, we just repeat the blue and purple part zero times. In the
same way, we get the solutions for 𝑁 × 1 crypts.

The following python code outputs crypts using this pattern:
1 t = int(input())
2 for T in range(t):
3 print("Case #{}:".format(T))
4 n, m = map(int, input().split())
5 print("o-"*(m-1)+"o")
6 for i in range(n-1):
7 print("|."*(m-1)+"|")
8 print("o."*(m-1)+"o")
9

Subtask 2: Subtask 2: Ladislaus wing
From this subtask onward, the crypts have to fulfill all conditions. In particular, it is now
forbidden for any room to have exactly two doors ripped out.

This subtask has a somewhat special format, in that your program is allowed to choose the crypt
dimensions (as long as no size is used twice). So you just have to find any twenty sizes for which
you can find a valid crypt layout. One possible solution is given by the following pattern:

o.o.o-o-o.o
|.|...|...|
o-o-o-o-o-o
|...|...|.|
o.o-o-o.o.o

Similar to subtask 1, you’ll get different sizes of crypts by replicating the red part any number of
times. The following python code outputs crypts based on this pattern.
1 T = int(input())
2 for t in range(T):
3 print("Case #{}: {} {}".format(t, 3, 2+4*t))
4 print("o." + "o.o-o-o."*t + "o")
5 print("|." + "|...|..."*t + "|")
6 print("o-" + "o-o-o-o-"*t + "o")
7 print("|." + "..|...|."*t + "|")
8 print("o." + "o-o-o.o."*t + "o")

Subtask 3: Esztergom Wing
Subtask 4: World Crypt Association
Since the fourth subtask is to theoretically analyze the solution for the third subtask, they are
discussed here together.

The format of the third subtask is similar to the first subtask, with one major difference: As not
every crypt size admits a valid crypt layout, you will first have to output weather or not there is
any solution.

We will start by showing that all valid crypts should have a number of rooms that is even, but not
divisible by four. Next we will discuss cases where either the width or the height of the crypt is
at most two. Finally, we will show a pattern for constructing the larger cases.

22/40

First Round, 2022/2023
Task palatinalcrypt

The number of rooms has to be even
For every room, we count the number of removed walls, and we add all those numbers together.
If we do this, every wall has been counted twice: once for each of the rooms it connects. In
particular, this number is even. Let’s call this number 𝐷.

Remember that we are not allowed to remove exactly two or exactly four walls of a room. This
means we have to remove one or three walls, i.e. an odd number1. So every room contributes an
odd summand to 𝐷, which means that the number of rooms for a valid crypt layout must be
even.

The number of rooms must not be divisible by four
We start by coloring the rooms of the crypt in a checkerboard pattern:

o.o.o.o.o.o.o.o.o.o
...................
o.o.o.o.o.o.o.o.o.o
...................
o.o.o.o.o.o.o.o.o.o
...................
o.o.o.o.o.o.o.o.o.o
...................
o.o.o.o.o.o.o.o.o.o
...................
o.o.o.o.o.o.o.o.o.o
...................
o.o.o.o.o.o.o.o.o.o

We split the red rooms into two groups based on the number of walls removed. Let 𝑟1 be the
number of red rooms with one wall removed and 𝑟3 the number of red rooms with three walls
removed.

We have previously shown that any valid crypt layout has an even number of rooms. Since a
checkerboard with an even number of spaces evenly splits its spaces into the two colors, exactly
half of the rooms are red:

𝑟1 + 𝑟3 =
𝑛

2 ,

where 𝑛 is the number of rooms in the crypt.

Next, we note that for the entire crypt, we will remove exactly 𝑛 − 1 walls: By the task statement,
we are not allowed to remove more than that, and we can’t connect all the rooms when removing
less than that. Each wall is the wall of exactly one red (and one blue) room. This means that the
number of walls removed is equal to the number of walls removed from red rooms, i.e. equal to
the number of red rooms where one wall is removed plus three times the number of red rooms
where three walls are removed:

𝑟1 + 3𝑟3 = 𝑛 − 1

Combining those two equations gives us

𝑟3 =
𝑛 − 2

4

𝑟3, the number of red rooms with three walls removed, must be a whole number. But 𝑛−2
4 is not a

whole number when 𝑛 is divisible by four. So, if the number of rooms is divisible by four, no
valid crypt layout exists.

1Actually, a room may also have zero walls removed. But since such a room would not be connected to the rest of the
crypt, this can only happen in a one by one crypt. We don’t have to consider this special case because it does not
satisfy the limit 2 ≤ 𝑁 ·𝑀 given in the task statement.

23/40

First Round, 2022/2023
Task palatinalcrypt

Mirroring crypts
If we found a valid crypt with dimensions 𝑁 × 𝑀, we can mirror it to get a valid crypt with
dimensions 𝑀 × 𝑁 . For example, we can mirror the following 3 × 6 crypt

o.o-o-o.o.o
|...|...|.|
o-o-o-o-o-o
|.|...|...|
o.o.o-o-o.o

to obtain the following 6 × 3 crypt

o-o-o
..|..
o.o-o
|.|..
o-o.o
|.|.|
o.o-o
..|.|
o-o.o
..|..
o-o-o

Cases with width or height one
WloG assume that the height is one (otherwise, mirror the crypt).

It is possible to construct a 1 × 2 crypt:

o-o

It is not possible to construct a 1 ×𝑀 crypt for any 𝑀 > 2. Since the height of the crypt is one,
the only way to connect all the rooms is in a line. Therefore, we would have to tear down two
walls of every room except for the outermost ones. But it is not allowed to tear down exactly two
walls of a room, showing that we cannot construct a valid crypt. In the following example of a
1 × 3 crypt, the offending room is highlighted:

o-o-o

Cases with width or height two
WloG assume that the height is two (otherwise, mirror the crypt).

It is possible to construct a 2 × 1 as well as a 2 × 3 crypt:

o
|
o

o-o-o
..|..
o-o-o

A valid 2× 2 crypt is impossible since the number of rooms is divisible by four, which we showed
is not allowed.

A valid 2 ×𝑀 crypt with 𝑀 > 3 is also not possible. To see why, first consider the two leftmost

24/40

First Round, 2022/2023
Task palatinalcrypt

rooms. This is demonstrated below with a 2 × 5 room, but the argument works for any width
larger than three.

o.o.o.o.o
.........
o.o.o.o.o

Each of these rooms needs to have one wall removed (it can’t have three walls removed as there
are only two adjacent rooms). If we did this by connecting the two leftmost rooms to each other,
they would not be connected to the rest of the crypt, so we will have the two leftmost rooms to
the rooms on their right:

o-o.o.o.o
.........
o-o.o.o.o

We now turn our attention to the second rooms from the left.
o-o.o.o.o
.........
o-o.o.o.o

There are three possibilities of how many connections each of these rooms may have:

• Both rooms have one connection

• One of the rooms has one connection, the other has three

• Both rooms have three connections

In the fist case, the crypt would be disconnected. The second case can’t happen: We can’t give
one of the rooms three connections without giving the other room a second connection. This
only leaves the third option where both rooms have three connections:

o-o-o.o.o.o
..|........
o-o-o.o.o.o

Repeatedly applying this argument, we can show that the crypt will have to look like this:

o-o-o-o-o
..|.|.|..
o-o-o-o-o

In particular, all walls except the one on the very left and the one on the very right have to be
torn down. This requires tearing down 3𝑀 − 4 walls. For all 𝑀 greater than 3, this is more than
the allowed number of 2𝑀 − 1. So, as we wanted to show, there are no valid 2 ×𝑀 crypts with
𝑀 > 3.

Larger crypts
It remains to find valid crypts with width and height at least 3. As we’ve previously shown, we
only have to consider crypts whose number of rooms is even, but not divisible by four.

Either the width or the height of the crypt has to be even, but not divisible by four. Assume WloG
that it is the width (otherwise, mirror the crypt). Then, we know that the height is odd.

We now describe one possible way of constructing the solutions. It distinguishes between crypts
with 𝑁 mod 4 = 1 and crypts with 𝑁 mod 4 = 3 (where 𝑁 is the height).

25/40

First Round, 2022/2023
Task palatinalcrypt

N mod 4 = 1
In this case, we can use the following pattern:

o.o.o.o.o.o.o.o.o.o
|.|.|.|.|.|.|.|.|.|
o-o-o-o-o.o-o-o-o-o
|.......|.|.......|
o-o-o.o-o.o-o.o-o-o
|.|.....|.|.....|.|
o.o-o.o-o.o-o.o-o.o
..|.....|.|.....|..
o.o-o.o-o.o-o.o-o.o
|.|.....|.|.....|.|
o-o.o.o-o.o-o.o.o-o
|.|.|...|.|...|.|.|
o.o-o.o-o.o-o.o-o.o
..|.|...|.|...|.|..
o-o.o.o-o.o-o.o.o-o
..|.....|.|.....|..
o-o-o.o-o-o-o.o-o-o

Again, we can extend it to the right by repeating the red and purple part and to the bottom
by repeating the blue and purple part. Crypts with width six can be obtained by completely
omitting the red and purple parts. Crypts of height five can be obtained by omitting the blue
and purple part.

N mod 4 = 3
In this case, we can use the following pattern:

o-o-o-o-o.o-o-o-o-o
..|.|.|.....|.|.|..
o-o.o.o-o.o-o.o.o-o
..|...|.....|...|..
o.o-o.o-o.o-o.o-o.o
|.|...|.....|...|.|
o-o.o.o-o.o-o.o.o-o
|.|.|.|.....|.|.|.|
o.o-o.o-o.o-o.o-o.o
..|.|.|.....|.|.|..
o-o.o.o-o.o-o.o.o-o
..|...|.....|...|..
o.o-o.o-o.o-o.o-o.o
|.|...|.....|...|.|
o-o.o.o-o.o-o.o.o-o
|.|.|.|.....|.|.|.|
o.o-o.o-o.o-o.o-o.o
..|.|.|.....|.|.|..
o-o.o.o-o-o-o.o.o-o
..|...|.|.|.|...|..
o-o-o.o.o.o.o.o-o-o

Runtime and memory usage
Let us consider the memory usage first. Note that both of the pattern consist of a constant number
of building blocks, each of constant size. These patterns are the only thing we need to save.
When outputting the grid, we can calculate the index and output the corresponding symbol from
the pattern. Thus we only use 𝑂(1) memory.

Coming to the running time of our algorithm we can check whether the grid exists in 𝑂(1) by
checking the conditions we established. If it exists we need 𝑂(𝑁 · 𝑀) time to iterate over all
rooms and outputting the corresponding wall configurations from the patterns.

26/40

First Round, 2022/2023
Task palatinalcrypt

Implementation
The following python code constructs crypts using the patterns discussed above.

1 def parse():
2 n, m = list(map(int, input().split()))
3 return n, m
4

5 def flip(map):
6 def flip_char(c):
7 if c == '-':
8 return '|'
9 if c == '|':

10 return '-'
11 return c
12 return [
13 ''.join(flip_char(map[j][i]) for j in range(len(map))) for i in range(len(map[0]))
14]
15

16 def solve(n, m):
17 if n * m == 1:
18 return ['o']
19 if n == 1 and m == 2:
20 return ['o-o']
21 if n == 2 and m == 1:
22 return [
23 'o',
24 '|',
25 'o',
26]
27 if n == 2 and m == 3:
28 return [
29 'o-o-o',
30 '..|..',
31 'o-o-o',
32]
33 if n == 3 and m == 2:
34 return [
35 'o.o',
36 '|.|',
37 'o-o',
38 '|.|',
39 'o.o',
40]
41 if min(n, m) <= 2:
42 return None
43 if (n * m) % 4 != 2:
44 return None
45

46 if n % 4 != 2:
47 return flip(solve(m, n))
48

49 assert n % 4 == 2
50 if m % 4 == 1:
51 start = [
52 'o-o-o-o.' + 'o-o-o.o.' * (m // 4 - 1) + 'o',
53 '..|.|...' + '..|...|.' * (m // 4 - 1) + '|',
54 'o-o.o-o-' + 'o-o-o-o-' * (m // 4 - 1) + 'o',
55 '..|.|.|.' + '|...|...' * (m // 4 - 1) + '|',
56 'o-o.o.o.' + 'o.o-o-o.' * (m // 4 - 1) + 'o',
57]
58 join = '..|.....' + '........' * (m // 4 - 1) + '.'
59 extend = [
60 'o-' + 'o.' * (m - 2) + 'o',
61 '..' + '|.' * (m - 2) + '|',
62 'o-' + 'o-' * (m - 2) + 'o',
63 '..' + '..' * (m - 2) + '|',
64 'o-' + 'o-' * (m - 2) + 'o',

27/40

First Round, 2022/2023
Task palatinalcrypt

65 '..' + '|.' * (m - 2) + '|',
66 'o-' + 'o.' * (m - 2) + 'o',
67]
68 else:
69 assert m % 4 == 3
70

71 start = [
72 'o.o.' + 'o-o-o.o.' * (m // 4) + 'o',
73 '|.|.' + '..|...|.' * (m // 4) + '|',
74 'o-o-' + 'o-o-o-o-' * (m // 4) + 'o',
75 '|...' + '|...|...' * (m // 4) + '|',
76 'o-o.' + 'o.o-o-o.' * (m // 4) + 'o',
77]
78 join = '|...' + '........' * (m // 4) + '.'
79 extend = [
80 'o-' * (m - 2) + 'o-o',
81 '|.' * (m - 2) + '|..',
82 'o.' * (m - 2) + 'o-o',
83 '..' * (m - 2) + '|..',
84 'o.' * (m - 2) + 'o-o',
85 '|.' * (m - 2) + '|..',
86 'o-' * (m - 2) + 'o-o',
87]
88

89 lines = []
90 lines.extend(start)
91 lines.append(join)
92 for i in range(n // 4 - 1):
93 lines.extend(extend)
94 lines.append(join)
95 lines.extend(reversed(start))
96 return lines
97

98 def outformat(lines):
99 if lines is None:

100 return 'Impossible'
101 return 'Possible\n' + '\n'.join(lines)
102

103 if __name__ == '__main__':
104 for case in range(int(input())):
105 print(f"Case #{case}:", outformat(solve(*parse())))

28/40

First Round, 2022/2023
Task dada

Dada
Task Idea Joël Huber
Task Preparation Petr Mitrichev
Description English Petr Mitrichev
Description German Timon Gehr
Description French Mathieu Zufferey
Solution Petr Mitrichev
Correction Timon Gehr

In this task, you are given a connected labyrinth that has 𝑁 rooms and 𝑁 − 1 passages, in other
words a tree. Each room has a bucket of paint of a unique color, and for each color we are given a
list of rooms where we need to carry the corresponding bucket, and in the end we need to bring
it back to where it was originally. We can only carry one bucket at a time, and our goal is to
minimize the total number of times we carry a bucket along a passage.

Note that in the input file we were given the list of colors that need to be carried to a particular
room instead of a list of rooms where a particular color needs to be carried, so we needed to
convert the data from one representation to another as the first step.

Subtask 1: A single color (10 Points)
In this subtask there is just one bucket of paint in room 0 and 𝑁 ≤ 1000.

We will denote as important the rooms that either have the bucket in the beginning and at
the end (room 0), or that need this bucket to complete the painting. Let us first make a few
observations:

• For each passage such that there are important rooms in the parts of the tree on both sides
of this passage, we need to carry the bucket along this passage at least twice (there and
back).

• For each passage such that all important rooms are in one of the two parts that this passage
separates the tree into, we do not need to carry the bucket along this passage.

It turns out that we can always find a way to carry the bucket in such a way that for each passage
of the first kind we need to carry the bucket along it exactly twice. In order to see that, consider
the case where we carry the bucket along it at least four times (twice there and twice back),
and denote our overall route as A-there-B-back-C-there-D-back-E, where the letters from A to E
denote whole segments of the route. But in that case we can make our route shorter by going
A-there-B-D-back-C-E.

Therefore we just need to count the number of passages such that there are important rooms in
the subtrees on both sides of it, and multiply this amount by 2. The most straightforward way to
do it would run in 𝑂(𝑁2), but we can easily improve to 𝑂(𝑁) by running a depth-first search
that checks if a subtree has interesting rooms in it, starting it from some important room (for
example, from room 0 which has the bucket initially). The interesting passages are those that
lead to a subtree which has an important room in it.

Here is the main part of the code:
1 // Returns whether the subtree had any important rooms, and the total walking time inside it.
2 pair<bool, int> dfs(const vector<vector<int>>& adj, const vector<bool>& need, int at, int skip) {
3 bool any = need[at];
4 int res = 0;
5 for (int x : adj[at]) if (x != skip) {
6 auto [child_any, child_res] = dfs(adj, need, x, at);

29/40

First Round, 2022/2023
Task dada

7 if (child_any) {
8 any = true;
9 res += 1 + child_res;

10 }
11 }
12 return {any, res};
13 }
14

15 int solve(int start, const vector<vector<int>>& adj, const vector<bool>& need) {
16 return 2 * dfs(adj, need, start, -1).second;
17 }

The code uses a recursive lambda for the dfs function, which is a useful trick, but it was by no
means necessary — one could have just used a normal function instead.

Subtask 2: Many colors (15 Points)
In this subtask we still have 𝑁 ≤ 1000, but now there is a bucket of paint in each room.

Since we do not care about the number of times we walk along the passage without a bucket in
hand, the work related to each color is completely independent, and therefore we can just use the
solution from subtask 1 for each color and add up the results.

Subtask 3: Apprentices (20 Points)
In this subtask we still have 𝑁 ≤ 1000, but there are also ‘M‘ apprentices, and for each color you
can send each of the apprentices along one passage from the vertex that has the bucket with that
color initially, and they will take care of the rooms in that subtree, so that you only need to deal
with the subtrees that no apprentice has gone to.

Thanks to the fact that we start the depth-first search from the vertex initially containing the
bucket, the solution above already computes the number of steps we need for each subtree, and
we just need to remove 𝑀 largest ones before adding them up.

Here is the updated code:
1 // Returns whether the subtree had any important rooms, and the total walking time inside it.
2 pair<bool, int> dfs(const vector<vector<int>>& adj, const vector<bool>& need, int at, int skip,
3 int num_free_children) {
4 bool any = need[at];
5 vector<int> children;
6 for (int x : adj[at]) if (x != skip) {
7 auto [child_any, child_res] = dfs(adj, need, x, at, 0);
8 if (child_any) {
9 any = true;

10 children.push_back(1 + child_res);
11 }
12 }
13 sort(children.begin(), children.end());
14 int res = 0;
15 for (int i = 0; i + num_free_children < children.size(); ++i) res += children[i];
16 return {any, res};
17 }
18

19 int solve(int start, const vector<vector<int>>& adj, const vector<bool>& need, int m) {
20 return 2 * dfs(adj, need, start, -1, m).second;
21 }

Subtask 4: A Huge Artwork (15 Points)
In this subtask we have a bigger tree: 𝑁 ≤ 3 · 105, but we know additionally that the number of
(a room, a color needed in this room) pairs also does not exceed 3 · 105.

30/40

First Round, 2022/2023
Task dada

We can no longer afford to run a separate depth-first search for each color. There are two
directions that we can pursue to overcome this: either we process all colors together instead of
one-by-one, or we make the processing of each color faster. It turns out that both options can
lead us to a fast solution.

First solution
First, let us try to process all colors together in a single depth-first search. The depth-first
search for subtasks 1 through 3 returns a boolean flag denoting if an important vertex for the
current color appears in the subtree, and an integer denoting the number of passages that we
have to traverse to visit all such vertices. Instead, we will now return a map from a color to a
pair containing the number of this color’s important vertices in the subtree, and the number of
passages that we have to traverse to visit all such vertices.

Since we no longer can afford to root the tree at the vertex with the bucket for each color, we will
encounter the vertex with the bucket at some point during the unified depth-first search. At this
point the values returned from the children allow us to find out the work for an apprentice sent
to one of the children, but we do not know the work that an apprentice sent towards the root
would do. This last value we can obtain later by subtraction: when we reach the lowest vertex
such that all important vertices for some color are in its subtree, we will know the total amount
of work needed to reach all important vertices for this color, and we can subtract the work for all
apprentices going towards the children from the bucket vertex to get the work for the apprentice
going towards the root from the bucket vertex.

This solution still runs in 𝑂(𝑁2) or maybe even in 𝑂(𝑁2 log𝑁) because of the map. However, we
can use the small-to-large technique to make it faster: when combining the maps coming from
several children, we need to pass the maps by pointer or by reference, and merge the smaller
maps into the biggest one, to avoid making a copy of the biggest one.

In addition to merging the maps, we also need to increase the second value (the total number of
passages needed to traverse all important vertices in the subtree) for all elements in the map by 2.
Doing this by traversing all elements of the map would once again lead to 𝑂(𝑁2) running time,
but we can avoid this by storing an additional integer bonus together with the map, increasing
that integer by 2 instead, and adding that integer to the map value on every map read.

To prove that this works fast, first consider a slightly different approach: let us take the map with
the largest sum of values as the main one when merging. Then every time we need to traverse an
element the sum of values in the map containing it increases at least twice, because we merge its
map into one with a bigger sum of values. Therefore we traverse each element at most log𝑁
times, and the total running time is either 𝑂(𝑁 log𝑁) or 𝑂(𝑁 log2 𝑁), depending on whether we
use a hash map or balanced tree. Now we can notice that our way of merging, that is choosing
the map with the most elements as the main one, leads to the same or fewer operations than
choosing the map with the largest sum of values, because we keep the same or more elements
untouched at every step.

Note that running a depth-first search on a tree with 3 · 105 vertices can quite easily lead to a stack
overflow, so one needs to know how to increase the default stack size for their programming
environment, or to rewrite the depth-first search without using recursion.

Second solution
Alternatively, we can learn how to process each color faster. Even though we potentially have
to walk the entire tree for each color, the number of important vertices can not be big for all
colors, as their total number is bounded. So we need to learn to handle each color in time
proportional to the number of its important vertices, potentially after some color-independent
preprocessing.

If we know the order of visiting the important vertices of each color, and the grouping of

31/40

First Round, 2022/2023
Task dada

important vertices into parts accessible by one apprentice, then we just need to be able to quickly
determine the distance between two vertices in a tree. This is a textbook problem that can be
solved using the lowest common ancestor (LCA) algorithms that allow to answer such queries
in 𝑂(log𝑁) or even 𝑂(1) after 𝑂(𝑁) or 𝑂(𝑁 log𝑁) preprocessing, which is fast enough for our
purposes.

It turns out that establishing the optimal order of visiting the important vertices is also not hard.
Suppose that we first enumerate all vertices in the order the depth-first search visits them, also
called the preorder traversal of the tree. Then it turns out that it is always optimal to visit the
important vertices in this order, because when we do it this way each passage that has important
vertices in its subtree is traversed two times (when we cross the boundaries of the subtree in the
preorder traversal), which is exactly what we counted in Subtask 1.

Finally, the preorder traversal also gives us an easy way to identify the important vertices belonging
to one apprentice, since each subtree forms a contiguous range of vertices in that order. It is also
worth noting that the preorder traversal is a building block of many LCA algorithms, therefore
we get it automatically while implementing that algorithm and the additional implementation
on top of LCA remains manageable.

Subtask 5: Theoretical (40 Points)
First, let us state the answer, and then we will explain how to find it.

• When 𝑁 − 1 ≤ 𝑀, 𝑓 (𝑁, 𝑀) = 0.

• When 𝑁
2 ≤ 𝑀 < 𝑁 − 1 and 2 ≤ 𝑀, 𝑓 (𝑁, 𝑀) = Θ(𝑁 −𝑀).

• When 2 ≤ 𝑀 < 𝑁
2 , 𝑓 (𝑁, 𝑀) = Θ(𝑁 log𝑁

log𝑀).

• When 0 <= 𝑀 <= 1 and 𝑀 < 𝑁 − 1, 𝑓 (𝑁, 𝑀) = Θ(𝑁2).
The big-Theta notation 𝑓 (𝑁, 𝑀) = Θ(. . .) denotes both the lower bound up to a constant factor
and the upper bound up to a constant factor at the same time. Since we are able to prove that the
same formula is both the lower bound and the upper bound up to a constant factor, we know
that this is the best possible solution and those bounds cannot be improved.

Note that because we do not care about a constant factor, there are many other equivalent ways to
state this answer, for example 𝑁

2 can be replaced with 𝑁
10 , or log𝑀 can be replaced by log 2𝑀 + 1

when 𝑀 ≥ 2.

To arrive at this answer, first let us remove some insignificant parts of the problem statement.
Since we are interested in the highest possible number of times a bucket is carried, we can assume
that every color needs to be used in every vertex. Also, if we find the centroid of the tree (such
vertex that after removing it all parts have at most 𝑁

2 vertices) and root the tree from the centroid,
then for every vertex except the root we will send one of the apprentices towards the root, as
it would cover the most vertices of all options for this apprentice (at least half of all vertices).
Finally, for each edge along which Stofl carries the bucket he needs to carry it back, so the answer
is always even, and we can compute half the answer since we do not care about the constant
factor.

Now let us consider various cases. When 𝑁 − 1 ≤ 𝑀, we always have enough apprentices to
cover the entire tree, so Stofl can just rest, therefore 𝑓 (𝑁, 𝑀) = 0.

When 0 ≤ 𝑀 ≤ 1 and 𝑀 < 𝑁 − 1, consider a tree that is a chain with 𝑁 vertices. For a vertex
that is 𝑖 edges away from the closest end of the chain Stofl will need to carry the bucket at
least 𝑖 times towards the closest end of the chain, while the apprentice (if there is one) can
carry it towards the farthest end of the chain. Therefore Stofl’s total effort would be at least
0+ 0+ 1+ 1+ ... + ⌊ 𝑁−1

2 ⌋ = Ω(𝑁2). On the other hand, even when there are no apprentices, there

32/40

First Round, 2022/2023
Task dada

are at most 𝑁 − 1 edges to be traversed for each color (as a reminder, we are computing half the
answer), so the total effort is at most 𝑁 · (𝑁 − 1) = 𝒪(𝑁2), therefore 𝑓 (𝑁, 𝑀) = Θ(𝑁2).
Now let us turn to the case 𝑀 ≥ 2. A chain would be completely covered by two apprentices, so
we need a tree with more branching. Consider an almost-balanced tree that is built recursively
from the root: we take the root, then split the remaining 𝑁 − 1 vertices into 2𝑀 groups of roughly
equal size (some larger by 1 than others), and recursively construct a subtree for each group that
is connected to the root. In case at some level of recursion there are less than 2𝑀 + 1 vertices
remaining, we just take the root and make all other vertices its children.

Since the apprentices can cover at most 𝑀 children of every vertex (actually, they can cover at
most 𝑀 − 1 children for all vertices except the root because one of the apprentices has to go
towards the root, but since we do not care about the constant factor such precision is not required),
there will be at least 𝑀 uncovered children for all vertices that have 2𝑀 children. And since the
subtrees for each child are roughly the same in size, for each level of the tree Stofl will have to
cover at least roughly half of all edges below that level himself.

The total number of vertices at each level is 2𝑀 times the number of vertices on the previous level,
so the number of levels is around log2𝑀 𝑁 =

log𝑁
log 2𝑀 = Θ(log𝑁

log𝑀). And for almost all levels more

than half of all edges are below that level, so Stofl has to do Θ(𝑁 log𝑁
log𝑀) work on this tree.

But is such tree really the worst case? It turns out it is, for the following reason: consider any
tree rooted at its centroid as described above, and let us count the number of times Stofl has to
visit a particular vertex. As we go from this vertex towards the root of the tree, Stofl will only
go to the subtree containing this vertex if there are at least 𝑀 − 1 other subtrees that are bigger,
therefore the total size of the subtree multiplies by at least 𝑀 when this happens, so this cannot
happen more than log𝑀 𝑁 =

log𝑁
log𝑀 times, therefore the total work is 𝒪(𝑁 log𝑁

log𝑀), and since our

lower bound and upper bound are the same, we find that 𝑓 (𝑁, 𝑀) = Θ(𝑁 log𝑁
log𝑀).

Why does the answer stated above have one more case? In the above proof we used terms like
roughly half and almost all, and it turns out that we need to pay more attention to what that means.
For example, when 𝑁

2 <= 𝑀, the tree stops growing as we expect right from the root. To see
what happens in that case, notice there is at most one vertex with degree more than 𝑀, so Stofl
will only need to deal with that vertex, and the apprentices will still cover at least 𝑀 of 𝑁 − 1
other vertices, so Stofl’s part of the work is at most 𝑁 − 1 −𝑀. On the other hand, on a star (a
root connected to 𝑁 − 1 other vertices), Stofl’s part of the work is exactly 𝑁 − 1 −𝑀, so for this
case 𝑓 (𝑁, 𝑀) = Θ(𝑁 −𝑀).
When 𝑀 < 𝑁

2 the first level of the tree works as expected, so Stofl needs to do at least Ω(𝑁) work
for the root of the tree, and we can check that the error introduced by roughly half and almost all is
not significant enough to affect the overall 𝑓 (𝑁, 𝑀) = Θ(𝑁 log𝑁

log𝑀) bound.

To see why this is the case, consider two possibilities. If 𝑀 + 1 < 𝑁 ≤ 𝑀20, then 1 <
log𝑁
log𝑀 ≤ 20,

in other words this fraction is bound by a constant, and therefore Ω(𝑁) (the amount of work we
have to do for the root of the tree) is the same as Ω(𝑁 log𝑁

log𝑀) for this case and we have a lower
bound and an upper bound that match.

And when 𝑁 > 𝑀20, because 𝑀 ≥ 2 we can see that 𝑁 > 𝑀20 ≥ (2𝑀)10 > 1 + 2𝑀 +
(2𝑀)2 + · · · + (2𝑀)9, therefore the tree has at least 11 levels (where the root is also counted
as a level), and on all levels except the last two each vertex has exactly 2M children. On the
𝑖-th level Stofl’s part of work will be at least 𝑁−1−2𝑀−(2𝑀)2 ···−(2𝑀)𝑖

2 −𝑀 (half of all vertices below
that level minus M to account for the fact that the sizes of the parts can differ by 1), and
𝑁−1−2𝑀−(2𝑀)2 ···−(2𝑀)𝑖

2 − 𝑀 > 𝑁
4 − 𝑀 > 𝑁

8 for all levels except the last two. Therefore the total
amount of Stofl’s work is at least 𝑁

8 (log2𝑀 𝑁 − 4) ≥ 𝑁
8

log2𝑀 𝑁

2 = Ω(𝑁 log𝑁
log𝑀).

33/40

First Round, 2022/2023
Task dada

We have provided the solution in an informal fashion first, with terms like roughly half and almost
all present, and then made it formal at the end, because we wanted to show how does one come
up with such a solution. When writing down your solution during the round you did not need
to write down the informal part, and could just focus on the formal proof.

34/40

First Round, 2022/2023
Task thermalsprings

Thermal Springs
Task Idea Johannes Kapfhammer
Task Preparation Daniel Rutschmann
Description English Daniel Rutschmann
Description German Timon Gehr
Description French Mathieu Zufferey
Solution Daniel Rutschmann
Correction

In this task, you were given 𝑛 thermal springs with characteristics 𝑡𝑖 , 𝑚𝑖 , 𝑠𝑖 and 𝑝𝑖 . Binna could
go from spring 𝑎 to spring 𝑏 if 𝑡𝑎 < 𝑡𝑏 , 𝑚𝑎 < 𝑚𝑏 , 𝑠𝑎 > 𝑠𝑏 and 𝑝𝑎 < 𝑝𝑏 .

Subtask 1: All the Springs (20 Points)
If Binna wants to bathe at all the springs, she has to visit the springs in order of increasing
temperature 𝑡𝑖 . Thus, we can sort the springs and check whether this gives a valid route.
1 def solve(n, t, m, s, p):
2 order = list(sorted(range(n), key = lambda i : t[i]))
3 for i in range(n-1):
4 a = order[i]
5 b = order[i+1]
6 if not (t[a] < t[b] and m[a] < m[b] and s[a] > s[b] and p[a] < p[b]):
7 print("NO")
8 return
9 print("YES")

10 print(*order)
11

12 def parse():
13 yield int(input())
14 yield from (list(map(int, input().split())) for _ in range(4))
15

16 if __name__ == '__main__':
17 for case in range(int(input())):
18 print(f"Case #{case}:", end=' ')
19 solve(*parse())

Subtask 2: As Many Springs as Possible (20 Points)
Similar to the first subtask, we can sort the springs by 𝑡𝑖 . Then, use dynamic programming:
Let DP[𝑖] be the length of the longest valid route ending at spring 𝑖. Such a route either starts
at spring 𝑖, or consist of some route to spring 𝑗 followed by going from 𝑗 to 𝑖. This yields the
formula

DP[𝑖] = max
(
1, max

𝑡 𝑗<𝑡𝑖
𝑚𝑗<𝑚𝑖

𝑠 𝑗>𝑠𝑖
𝑝 𝑗<𝑝𝑖

(1 + DP[𝑗])
)

Filling this DP table takes 𝒪(𝑁2) time. To extract the longest route, it can be useful to store the
optimal 𝑗 for every 𝑖 (in addition to the DP value).
1 def solve(n, t, m, s, p):
2 order = list(sorted(range(n), key = lambda i : t[i]))
3 dp = [1 for _ in range(n)]
4 best = [-1 for _ in range(n)]
5

6 for i,e in enumerate(order):

35/40

First Round, 2022/2023
Task thermalsprings

7 for j,f in enumerate(order[:i]):
8 if t[f] < t[e] and m[f] < m[e] and s[f] > s[e] and p[f] < p[e]:
9 if dp[j] >= dp[i]:

10 dp[i] = dp[j] + 1
11 best[i] = j
12

13 cur = max(range(n), key = lambda i : dp[i])
14 print(dp[cur])
15 out = []
16 while cur >= 0:
17 out.append(order[cur])
18 cur = best[cur]
19 out.reverse()
20 print(*out)
21

22 def parse():
23 yield int(input())
24 yield from (list(map(int, input().split())) for _ in range(4))
25

26 if __name__ == '__main__':
27 for case in range(int(input())):
28 print(f"Case #{case}:", end=' ')
29 solve(*parse())

Subtask 3: Two Mice (20 Points)
Once again, sort the springs by 𝑡𝑖 . Then, use dynamic programming: Let DP[(𝑖 , 𝑗)] be 1 if 𝑖 < 𝑗
and there is a pair of routes with one route ending at spring 𝑖 and one route ending at spring 𝑗
such that the springs 1, . . . , 𝑗 are each visited by at exactly one mouse, and 0 otherwise. From
(𝑖 , 𝑗), either Stofl or Binna has to go to spring 𝑗 + 1 and we try both options, namely (𝑗 , 𝑗 + 1) and
(𝑖 , 𝑗 + 1). (One can also interpret this as a BFS / DFS on a state graph.) In total, this uses 𝒪(𝑁2)
time.
1 #include <bits/stdc++.h>
2 using namespace std;
3

4 struct Spring{
5 int t, m, s, p;
6 int index;
7

8 friend bool operator<(Spring const&a, Spring const&b){
9 return a.t < b.t;

10 }
11 };
12 bool valid(Spring const&a, Spring const&b){
13 return a.t < b.t && a.m < b.m && a.s > b.s && a.p < b.p;
14 }
15 const int inf = 1.01e9;
16

17 void solve(){
18 int n;
19 cin >> n;
20 vector<Spring> v(n);
21 for(auto &e : v) cin >> e.t;
22 for(auto &e : v) cin >> e.m;
23 for(auto &e : v) cin >> e.s;
24 for(auto &e : v) cin >> e.p;
25 for(int i=0; i<n; ++i) v[i].index = i;
26 // add two dummy springs to simplify the implementation
27 v.push_back(Spring{-inf, -inf, inf, -inf, -99});
28 v.push_back(Spring{inf, inf, -inf, inf, -99});
29 n += 2;
30 sort(v.begin(), v.end());
31

32 vector<vector<int> > dp(n, vector<int>(n, 0));
33 // dummy springs ensure we start at 0, 1

36/40

First Round, 2022/2023
Task thermalsprings

34 dp[0][1] = -1;
35 for(int j=0; j+1<n; ++j){
36 for(int i=0; i<j; ++i){
37 const int k = j+1;
38 if(dp[i][j]){
39 if(valid(v[i], v[k])) dp[j][k] = 1+i;
40 if(valid(v[j], v[k])) dp[i][k] = -1-j;
41 }
42 }
43 }
44 // dummy springs ensure we end at n-2, n-1
45 int i = n-2, j = n-1;
46 if(!dp[i][j]){
47 cout << "NO\n";
48 return;
49 }
50 cout << "YES\n";
51 vector<int> a, b;
52 while(i != 0 || j != 1){
53 assert(i < j);
54 b.push_back(v[j].index);
55 const int k = dp[i][j];
56 if(k > 0){
57 a.swap(b);
58 j = i;
59 i = k-1;
60 } else {
61 j = -1-k;
62 }
63 }
64 b.push_back(v[1].index);
65 reverse(a.begin(),a.end());
66 reverse(b.begin(),b.end());
67 // remove dummy springs
68 if(a.back() == -99) a.pop_back();
69 if(b.back() == -99) b.pop_back();
70 for(auto &e : a) cout << e << " "; cout << "\n";
71 for(auto &e : b) cout << e << " "; cout << "\n";
72 }
73

74 signed main(){
75 int T;
76 cin >> T;
77 for(int t=0; t<T; ++t){
78 cout << "Case #" << t << ":";
79 solve();
80 }
81 }

Subtask 4: Big Plans (40 Points)
In the last subtask, we need to reduce the number of states (𝑖 , 𝑗) we consider to 𝒪(𝑁). The
key observation is the following: For any 𝑟, consider the minimal 𝑙 such that all the springs
𝑙 , 𝑙 + 1, . . . , 𝑟 − 1, 𝑟 can be visited by the same mouse. (Then in particular, a mouse cannot go
from spring 𝑙 − 1 to 𝑙.) Then

• there are no states (𝑖 , 𝑟) with 𝑖 < 𝑙 − 1, as that would imply the mouse at 𝑟 visited both the
springs 𝑙 − 1 and 𝑙,

• we have to consider the state (𝑙 − 1, 𝑟), and

• out of all states (𝑗 , 𝑟) with 𝑙 ≤ 𝑗 < 𝑟, we only care about the state with smallest 𝑗: Suppose
there are states (𝑗1 , 𝑟) and (𝑗2 , 𝑟) with 𝑙 ≤ 𝑗1 < 𝑗2 < 𝑟, then by assumption a mouse could go
from spring 𝑗1 to 𝑗2, hence any state reachable from (𝑗2 , 𝑟) is also reachable from (𝑗1 , 𝑟).

In particular, for each 𝑟, it suffices to consider the two states (𝑘, 𝑟) with smallest or second-smallest

37/40

First Round, 2022/2023
Task thermalsprings

𝑘. This reduces the running time to 𝒪(𝑁).
1 #include <bits/stdc++.h>
2 using namespace std;
3

4 struct Spring{
5 int t, m, s, p;
6 int index;
7

8 friend bool operator<(Spring const&a, Spring const&b){
9 return a.t < b.t;

10 }
11 };
12 bool valid(Spring const&a, Spring const&b){
13 return a.t < b.t && a.m < b.m && a.s > b.s && a.p < b.p;
14 }
15 const int inf = 1.01e9;
16

17 void solve(){
18 int n;
19 cin >> n;
20 vector<Spring> v(n);
21 for(auto &e : v) cin >> e.t;
22 for(auto &e : v) cin >> e.m;
23 for(auto &e : v) cin >> e.s;
24 for(auto &e : v) cin >> e.p;
25 for(int i=0; i<n; ++i) v[i].index = i;
26 // add two dummy springs
27 v.push_back(Spring{-inf, -inf, inf, -inf, -99});
28 v.push_back(Spring{inf, inf, -inf, inf, -99});
29 n += 2;
30 sort(v.begin(), v.end());
31

32 vector<vector<pair<int, int> > > dp(n);
33 auto add = [&](int r, pair<int, int> s){
34 // avoid duplicates
35 if(count(dp[r].begin(), dp[r].end(), s)) return;
36 // only keep the two minimal states
37 dp[r].push_back(s);
38 sort(dp[r].begin(), dp[r].end());
39 if(dp[r].size() > 2) dp[r].pop_back();
40 };
41 dp[1].push_back(make_pair(0, -1));
42 for(int j=0; j+1<n; ++j){
43 for(auto const&[i, _] : dp[j]){
44 const int k = j+1;
45 if(valid(v[i], v[k])) add(k, make_pair(j, 1+i));
46 if(valid(v[j], v[k])) add(k, make_pair(i, -1-j));
47 }
48 }
49 if(dp[n-1].empty()){
50 cout << "NO\n";
51 return;
52 }
53 int i = dp[n-1][0].first, j = n-1;
54 cout << "YES\n";
55 vector<int> a, b;
56 while(i != 0 || j != 1){
57 b.push_back(v[j].index);
58 int k = 0;
59 for(auto &e : dp[j]) if(e.first == i){
60 k = e.second;
61 }
62 if(k > 0){
63 a.swap(b);
64 j = i;
65 i = k-1;
66 } else {

38/40

First Round, 2022/2023
Task thermalsprings

67 j = -1-k;
68 }
69 }
70 b.push_back(v[1].index);
71 reverse(a.begin(),a.end());
72 reverse(b.begin(),b.end());
73 if(!a.empty() && a.back() == -99) a.pop_back();
74 if(!b.empty() && b.back() == -99) b.pop_back();
75 for(auto &e : a) cout << e << " "; cout << "\n";
76 for(auto &e : b) cout << e << " "; cout << "\n";
77 }
78

79 signed main(){
80 int T;
81 cin >> T;
82 for(int t=0; t<T; ++t){
83 cout << "Case #" << t << ":";
84 solve();
85 }
86 }

39/40

First Round, 2022/2023
Task trees

Trees
Task Idea Benjamin Schmid
Task Preparation Benjamin Schmid
Description English Benjamin Schmid
Description German Priska Steinebrunner
Description French Mathieu Zufferey
Solution
Correction Benjamin Schmid

Final tournament results: https://creativity.soi.ch/tournaments/2760.

40/40

https://creativity.soi.ch/tournaments/2760

	Paragliding
	Summary
	The Uetliberg (15 Points)
	Paragliding at the Gornergrat (15 Points)
	Mount Kékes (15 Points)
	The Mátra Mountain Range (25 points)
	All of Hungary (30 points)

	Rubik's Knob
	Computing the number of wind-ups (17 Points)
	Beginner Puzzles (16 Points)
	Advanced: Small Puzzles (23 Points)
	Expert: Large Puzzles (44 Points)

	Boulders
	Subtask 1 (10 Points)
	Subtask 2 (25 points)
	Subtask 3 (30 points)
	Subtask 4 (30 points)

	Cardgame
	Summary
	Subtask 1 (20 Points)
	Subtask 2 (20 Points)
	Subtask 3 (20 Points)
	Subtask 4 (20 Points)
	Subtask 5 (20 Points)

	Palatinal Crypt
	Klotild Wing
	Subtask 2: Ladislaus wing
	Esztergom Wing
	World Crypt Association
	The number of rooms has to be even
	The number of rooms must not be divisible by four
	Mirroring crypts
	Cases with width or height one
	Cases with width or height two
	Larger crypts
	Runtime and memory usage
	Implementation

	Dada
	A single color (10 Points)
	Many colors (15 Points)
	Apprentices (20 Points)
	A Huge Artwork (15 Points)
	First solution
	Second solution

	Theoretical (40 Points)

	Thermal Springs
	All the Springs (20 Points)
	As Many Springs as Possible (20 Points)
	Two Mice (20 Points)
	Big Plans (40 Points)

	Trees

