
Second Round Practical

Solution Booklet

Swiss Olympiad in Informatics

March 10–13, 2017

Swiss Olympiad in Informatics
Second Round Practical, 2018 Task zengarden

Zen Garden
EZ

1 n = int(input())
2 if n in (2, 3):
3 print("impossible")
4 else:
5 print(*range(1, n, 2), *range(0, n, 2))

2/9

Swiss Olympiad in Informatics
Second Round Practical, 2018 Task kanjiscam

Kanji Scam
20 points can be achieved by iterating over all permutations of digits (which are the onlymappings
allowed). For example, in C++ there exists the function std::next_permutation.

For more points, we have to speed up the evaluation of the total value (iterating over all prices
is too slow). For each symbol σ, we remember vσ, the sum over all prices of place values of the
positions where it occurs. For example, for the prices ab, ba and aawewould get va � 10+01+11
and vb � 01 + 10 + 00. The place values of course depend on k, i.e. the i-th last place has the
value k i−1.

Now, notice how the sum of prices for an assignment can be computed much more quickly:
We can just multiply the assigned value for a symbol by the vσ, giving us the contribution of
this symbol. When summing this up for all symbols, we get the total value of the prices. We go
from O(n) to O(k) time for computing the cost with a permutation. The preprocessing step takes
O(n · k) or O(n). In the same step we can also find out for each symbol if it is allowed to become
zero.
Now we have a much simplified version of the problem, for which we don’t need to go over

all possile digit assignments: we want to find a permutation P such that
∑k−1

i�0 P(i)vi is minimal.
This is easy: we just assign P(i) to zero for the i with largest vi , to one for the second largest vi ,
and so forth.

This becomes a bit more complicated because not all symbols may assume the value 0. We just
assign zero to P(i) for the maximizer among the symbols which are allowed to become 0. For the
remaining i, we proceed normally. This takes O(n) time for preprocessing and O(k log k) for the
sorting of the vi , so O(n + k log k) in total. The memory consumption is in O(n + k).

1 k, n = map(int, input().split())
2 vals = [input().strip() for _ in range(n)]
3

4 occs = [[0,True] for _ in range(k)]
5 for val in vals:
6 occs[ord(val[0])-ord('a')][1] = False
7 for i,v in enumerate(reversed(val)):
8 occs[ord(v)-ord('a')][0]+=k**i
9

10 occs.sort()
11

12 ans = 0
13 did_zero = False
14 val = 1
15 for v_i, can_zero in reversed(occs):
16 if not did_zero and can_zero:
17 did_zero = True
18 else:
19 ans+=v_i*val
20 val+=1
21 if not did_zero: print("impossible")
22 else: print(ans)

3/9

Swiss Olympiad in Informatics
Second Round Practical, 2018 Task escape

Escape the Prison
We sort the possibilities by the rank in ascending order and the corridors by the level in ascending
order. Then we initialize a Union-Find data structure on N (originally isolated) nodes.
Each connected component is assigned the minimum bribe of a guard at a node of the

component. Initially, it is just the bribe of the guard at the respective node or +∞ if there is no
guard at the respective node.
Now, we are going to process the possibilities. Let ci and ri be the current chamber and rank.

We first insert all corridors with level up to ri into the Union-Find. Whenever two components are
merged, the new component is assigned the minimum bribe from the two merged components.
Finally, the component of ri is found. If the respective minimum bribe equals +∞, the string

IMPOSSIBLE is outputted. Otherwise, the respective minimum bribe is outputted.
The initial sorting requires time in O(N log N + Q log Q). The initialization of a Union-Find

on N nodes can be performed in O(N).
Overall, at most M corridors are inserted into the Union-Find. Per corridor, an amortised time

in O(α(n)) is required to insert the corridor into the Union-Find.
Per possibility, a find-operation is performed which needs an amortised time in O(α(n)).
The total runtime is thus in O(N log N + Mα(n) + Q log Q). The memory complexity is in

O(N + M + Q).
Note. α(n) is the inverse function of the Ackermann function A(n , n). This value can be

considered constant for all practical purposes.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 const int INFTY = 1000000007;
5

6 int N, M, E, Q;
7

8 struct corridor {
9 int a, b; // chambers

10 int l; // level
11 bool operator<(const corridor &c) const {
12 return l < c.l;
13 }
14 } cor[1000005];
15

16 struct possibility {
17 int c; // chamber
18 int r; // rank
19 int id;
20 bool operator<(const possibility &p) const {
21 return r < p.r;
22 }
23 } pos[100005];
24

25 int ans[100005];
26

27 // Union-Find
28 int par[100005]; // parent of a node
29 int ran[100005]; // this is rank in Union-Find, not rank of Mouse Stofl
30 int bribe[100005]; // minimum bribe of a component
31

32 int find(int v) {

4/9

Swiss Olympiad in Informatics
Second Round Practical, 2018 Task escape

33 if(par[v] == v) return v;
34 else return par[v] = find(par[v]);
35 }
36

37 void uni(int v1, int v2) {
38 int r1 = find(v1), r2 = find(v2);
39 if(r1 == r2) return;
40 if(ran[r1] > ran[r2]) swap(r1, r2);
41 par[r1] = r2;
42 if(ran[r1] == ran[r2]) ran[r2]++;
43 if(bribe[r1] < bribe[r2]) bribe[r2] = bribe[r1];
44 }
45

46 int main() {
47 ios_base::sync_with_stdio(false);
48 cin >> N >> M >> E >> Q;
49

50 // initialize Union-Find
51 for(int i = 0; i < N; i++) {
52 par[i] = i;
53 ran[i] = 0;
54 bribe[i] = INFTY;
55 }
56

57 for(int i = 0; i < M; i++) {
58 cin >> cor[i].a >> cor[i].b >> cor[i].l;
59 }
60 sort(cor, cor + M);
61

62 for(int i = 0; i < E; i++) {
63 int e, p;
64 cin >> e >> p;
65 if(p < bribe[e]) bribe[e] = p;
66 }
67

68 for(int i = 0; i < Q; i++) {
69 cin >> pos[i].c >> pos[i].r;
70 pos[i].id = i;
71 }
72 sort(pos, pos + Q);
73

74 int cor_idx = 0; // next corridor to insert
75 for(int i = 0; i < Q; i++) {
76 while(cor_idx < M && cor[cor_idx].l <= pos[i].r) {
77 uni(cor[cor_idx].a, cor[cor_idx].b);
78 cor_idx++;
79 }
80 int comp = find(pos[i].c);
81 ans[pos[i].id] = bribe[comp];
82 }
83

84 for(int i = 0; i < Q; i++) {
85 if(ans[i] == INFTY) cout << "IMPOSSIBLE\n";
86 else cout << ans[i] << "\n";
87 }
88

89 return 0;
90 }

5/9

Swiss Olympiad in Informatics
Second Round Practical, 2018 Task museum

Museum
Whenever you need to count something, you can guess that the solution will be using dynamic
programming and combinatorics.

Teilaufgabe 1
There are 2n possibilities to place glass cases at some positions and the glass cupboards at the
other positions. (At each position, we have two possibilities: Either there is a glass case or a glass
cupboard.)
In the first subtask, the limits were quite small, so it was feasible to try all possibilities, check

whether you can place the SOI flag there and then multiply with the number of possibilities to
select a case or cupboard at a given position.
The resulting runtime is O(n 2n).

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 constexpr int mod = 1e9+7;
5

6 signed main(){
7 int n, k, A, B;
8 cin >> n >> k >> A >> B;
9 long long ans = 0;

10 // 0: case, 1: cupboard
11 for(unsigned mask = 0;mask < (1u<<n);++mask){
12 bool can_flag = false;
13 for(int i=0;i<=n-k;++i){
14 // check if flag can be placed at position i
15 if(!((mask>>i) & ((1<<k)-1))) can_flag = true;
16 }
17 if(can_flag){
18 long long possibilties = 1;
19 for(int i=0;i<n;++i){
20 if((mask>>i)&1){
21 possibilties = possibilties * B % mod;
22 } else {
23 possibilties = possibilties * A % mod;
24 }
25 }
26 ans+=possibilties;
27 ans%=mod;
28 }
29 }
30 cout << ans << "\n";
31 }

Teilaufgabe 2
Instead of counting the number of configurations that contain a SOI flag, it is easier to count the
opposite: The number of configurations that don’t contain a SOI flag.

Let DP[len][cnt] be the number of possibilities, to place len cases and/or cupboards such that
there is no way to put a SOI flag, and we have used cases for the last len positions. The answer to
the original problem will then be (A + B)n −∑k−1

i�0 DP[n][i].
If cnt > 0, we need to put a case at the last position, so we have

DP[len][cnt] � DP[len − 1][cnt − 1] · A

6/9

Swiss Olympiad in Informatics
Second Round Practical, 2018 Task museum

otherwise we have put a cupboard. Before that, we can have used at most k − 1 consecutive cases.
(If there would be k consecutive cases, there would be enough place for the SOI flag.) Therefore,

DP[len][0] �
(

k−1∑
i�0

DP[len − 1][i]
)
· B.

Initially, we did not use any cases, thus DP[0][0] � 1 and DP[0][j] � 0 ∀ j > 0.
This solution runs in O(n · k), which is fast enough to solve the first two subtasks.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 constexpr int mod = 1e9+7;
5 using ll = long long;
6

7 signed main(){
8 ll A, B;
9 int n, k;

10 cin >> n >> k >> A >> B;
11 vector<vector<ll> > dp(n+1, vector<ll>(k, 0));
12 dp[0][0] = 1;
13 for(int i=0;i<n;++i){
14 for(int j=1;j<k;++j){
15 dp[i+1][j] = dp[i][j-1] * A % mod;
16 }
17 ll sum = accumulate(dp[i].begin(), dp[i].end(), 0ll)%mod;
18 dp[i+1][0] = sum * B % mod;
19 }
20 ll ab_pow = 1;
21 for(int i=0;i<n;++i){
22 ab_pow = ab_pow * (A+B) % mod;
23 }
24 ll ans = ab_pow - accumulate(dp[n].begin(), dp[n].end(), 0ll);
25 ans%=mod;
26 if(ans<0) ans+=mod; // take care of negative numbers
27 cout << ans << '\n';
28 }

Teilaufgabe 3
The solution from subtask 2 can be optimized to O(n), if we store DP[i] in a data structure that
supports the following operations:

• Insert a number to the front
• Remove the number at the back
• Multiply all numbers with A

• Compute the sum of all numbers

It is possible to implement those operations with a std::queue in O(1) time, but we won’t do it
here.

An easier solution is to use a different DP approach: Let DP[len] be the number of possibilities
to place len cases/cupboards such that there is no way to place the SOI flag.

If we have already filled len − 1 positions and we want to add another case/cupboard, we can
only create space for the SOI flag under the following condition: The last k positions have been

7/9

Swiss Olympiad in Informatics
Second Round Practical, 2018 Task museum

used up by cases and at the (k + 1)-last position we put a cupboard (otherwise there already was
enough space for the SOI flag). Thus we have

DP[len − k − 1] · B · Ak

possibilities that we need to substract. We can fill our DP-table like this:

DP[len] � DP[len − 1] · (A + B) −DP[len − k − 1] · B · Ak

where DP[i] � (A + B)k for 0 ≤ i < k and DP[k] � (A + B)k − Ak .
The computation is possible in O(N), which can earn you 75 points.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 constexpr int mod = 1e9+7;
5 using ll = long long;
6

7 signed main(){
8 ll A, B;
9 int n, k;

10 cin >> n >> k >> A >> B;
11 vector<ll> dp(n+1, 0ll);
12 dp[0] = 1;
13 for(int i=1;i<k;++i){
14 dp[i] = dp[i-1] * (A+B) % mod;
15 }
16 ll Ak = 1, ABk = 1;
17 for(int i=0;i<k;++i){
18 Ak = Ak * A % mod;
19 ABk = ABk * (A+B) % mod;
20 }
21 dp[k] = (ABk + mod - Ak)%mod;
22

23 for(int i=k+1;i<=n;++i){
24 dp[i] = (dp[i-1]*(A+B) - dp[i-k-1]*B%mod*Ak)%mod;
25 }
26 ll ab_pow = 1;
27 for(int i=0;i<n;++i){
28 ab_pow = ab_pow * (A+B) % mod;
29 }
30 ll ans = ab_pow - dp[n];
31 ans%=mod;
32 if(ans<0) ans+=mod; // take care of negative numbers
33 cout << ans << '\n';
34 }

Teilaufgabe 4
This time we have n large, but k small. If k would be slighly smaller, we could have computed
the DP transition using matrix multiplication. However, that solution runs in O(k3 log n), which
is too slow.
Instead, we can use a divide and conquer style approach. If we split a sequence of n

cases/cupboards in the middle, the left part ends at a certain number of cases X and the right
part starts with a certain number of cases Y. Because we don’t have enough space for the SOI
flag, we must have X + Y < k.

For the DP from subtask 3, we obtain the following formula for len > 2k. (If len ≤ 2k it would
be possible to have only cases on the left/right side. We want to avoid such special cases, so for

8/9

Swiss Olympiad in Informatics
Second Round Practical, 2018 Task museum

len ≤ 2k we use the solution of subtasks 2 or 3.)

DP[len] �
∑

0≤X,Y
X+Y<k

DP
[⌊

len
2

⌋
− X − 1

]
· AXB ·DP

[⌈
len
2

⌉
− Y − 1

]
· AYB

Computing this DP recursively with memoization only needs O(k log n) states. (In depth d of
the recursion we can only reach states

⌊ n
2d

⌋
− 2k ≤ len ≤

⌊ n
2d

⌋
.)

A state can be computed in O(k) if we use prefix sums.

DP[len] �
k−1∑
X�0

DP
[⌊

len
2

⌋
− X − 1

]
· AxB ·

k−1−X∑
Y�0

DP
[⌈

len
2

⌉
− Y − 1

]
· AYB︸ ︷︷ ︸

Here, use prefix sums

The states with len ≤ 2k can be computed in O(k2) (subtask 2) or O(k) (subtask 3). The total
running time is therefore O(k2 log n), which scores 75 points.

To get the full 100 points, you need to combine the solutions of subtasks 3 and 4.

9/9

	Zen Garden
	Kanji Scam
	Escape the Prison
	Museum

