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Stollen cut

Task Idea Johannes Kapfhammer
Task Preparation Daniel Rutschmann
Description English Simon Meinhard
Description German Joël Mathys
Description French Yunshu Ouyang
Solution Simon Meinhard

Subtask 1: k � 1

20 points

We can try to cut the stollen at every possible place and check what deliciousness
difference we get. To compute the deliciousness of both portions, loop over both
subarrays. Looping over both portions takes O(n) time, and there are O(n) possible ways
to cut the stollen. Thus this solution takes O(n) · O(n) � O(n2) which is sufficiently fast
for n ≤ 2000. The correctness follows from the fact that we examine every possible cut.

40 points

The previous solution will be too slow for n ≤ 106. We consider two ways to improve the
previous algorithm.

• We reduce the time it takes to check the deliciousness difference for every possible
cut. We will see two different ways to achieve this.

• We reduce the number of cuts we need to check.

First approach

For the first approach, say that we have the deliciousness values d1 , d2 , · · · , dk , dk+1 , · · · , dn .
Furthermore assume that we already cut the stollen after the k-th part and that the

deliciousness of the portions are a (i.e.
∑k

i�1 di � a) and b (i.e.
∑n

i�k+1 di � b). What
can we say if we cut the stollen after the k + 1-th part? Clearly, we must add part k + 1
to the left portion, and remove part k + 1 from the right portion. The new values are
thus a + dk+1 and b − dk+1. This transition can be computed in constant time. How can
we design an algorithm based on this observation? Once we precomputed the values
when we cut the stollen just before the first part (the first mouse gets nothing), we can
compute all deliciousness differences using the transition described above. As we move
the cut O(n) times to the right, this takes O(n) · O(1) � O(n) time. The only thing that
we still need to think of is to compute the values for the leftmost cut. This can be easily
done in linear time by looping over the array once. The total running time is therefore
O(n) + O(n) � O(n). The correctness follows because we examine every possible cut.

Alternatively, we can use a technique known as prefix sums. The idea is that we are
given values a1 , a2 , · · · , an and we receive some queries (l , r) where we have to compute
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Task stollencut

al + al+1+ · · ·+ ar . We can easily answer every query in linear time by simply looping over
the subarray. The key idea to make this faster is to precompute some data before the first
query, the so called prefix sum array s0 , s1 , · · · , sn where s0 � 0, s1 � a1 , s2 � a1 + a2 , · · · ,
and sn � a1 + a2 + · · · + an . Here, si contains the sums of all values of array a up to
index i. Now, the result for a query (l , r) becomes sr − rl−1. This is optimal as it takes
constant time. The prefix sum array can be computed in linear time by noticing that
si � si−1 + ai for 1 ≤ i ≤ n and s0 � 0. Using this technique, we can simply precompute
the prefix sum array for the deliciousness values in O(n) time, loop over all O(n) possible
cuts and compute the deliciousness difference in constant time using the prefix sum
technique, and finally return the minimum absolute difference. The algorithm takes
O(n) + O(n) · O(1) � O(n) time. The correctness follows as we examine every possible
cut.

It is possible to generalize the prefix sum technique to multiple dimension. Can you
figure out how1?

Second approach

We first observe that when we move the cut to the right, the deliciousness of the left
portion increases while the deliciousness of the right portion decreases. The differences
a1 , a2 , · · · , an of the left minus the right portion thus increase. As we need to minimize
the absolute difference of deliciousness, it suffices to find the minimum (in terms of
absolute value) of two values, the minimum non negative difference x+ and the minimum
(in terms of absolute value) negative difference x− (if it exists, think of a stollen that has
total deleciousness 0). As the values a1 , a2 , · · · , an are increasing, we can use binary
search here to find x+. Binary search takes O(log n) iterations. For every iteration, we
need to compute the difference ai . We can simply do this by looping over the array
in linear time. To find x−, we can use binary search as well or observe that when the
differences are distinct, x− and x+ are next to each other2. Thus the algorithm takes
O(log n) · O(n) � O(n log n). The correctness follows from the binary search algorithm.

To compute the difference ai , we could have also used the prefix sum technique, which
would have reduced the complexity to O(n) + O(log n) · O(1) � O(n). However your
algorithm needs at least O(n) time to compute the prefix sum array, so you can simply
loop over all possible cuts as described in the first approach and end up with the same
time complexity and an easier implementation.

Subtask 2: k � 2

10 points

We proceed in a very similar way as for the first subtask. We loop over all O(n2) possible
cuts and compute the three deliciousness values in linear time. The time complexity
becomes O(n2) · O(n) � O(n3). The correctness follows from the fact that we examine
every possible cut.

1The query time is not constant anymore and depends on the dimension.
2How can you deal with the more general case where the differences are not necessarely distinct?
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30 points

We use a prefix sum array as described previously to compute the deliciousness values
of portions in constant time. Using the same algorithm structure as for the previous
subtask, the total running time is O(n) + O(n2) · O(n) � O(n2). The correctness follows
from the fact that we examine every possible cut.

60 points

To solve this exercise, first consider a situation where you already determined the left
portion, but you still have to split the right side of the stollen to get the middle and right
portion. Let us denote the deliciousness of left, middle and right portion by p1, p2 and
p3 respectively. Two cases now arise.

• p2 ≥ p3. Let us assume that if you remove the last portion of the middle part and
include it in the right portion, we still have that the deliciousness of the middle
part is at least as large as the deliciousness of the right part. If p1 ≥ p2, then we
get a better way to distribute the stollen between the mouses, as the maximum
deliciousness stays the same (p1) and the minimum deliciousness increases (p3

plus the extra part). By a similar reasoning, it is easy to see that all other cases
(p1 ≤ p3 and p2 ≥ p1 ≥ p3) we get a better stollen distribution as well. This implies
that we only need to consider one distribution for the case where p2 ≥ p3.

• p2 < p3. One can reason about this case in a very similar way, and conclude that
while p2 plus the first part of the right portion is smaller than p3 minus the first
part of the right portion, it is benificial to add the first part of the right portion to
the middle portion.

Using this observation, we can use our binary search approach from the subtasks where
k � 1. We loop over all possible O(n) left portions, and then use binary search to find the
best solution for both possible cases (p2 ≥ p3 and p2 < p3). Using prefix sums as described
above to accelerate binary search, we get O(n) + O(n) ·

(

O(log n) · O(1)
)

� O(n log n) for
the time complexity, where the first term comes from the prefix sum array computation.
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Brick tower

Task Idea Joël Mathys
Task Preparation Jan Schär
Description English Joël Mathys
Description German Jan Schär
Description French Simon Meinhard
Solution Jan Schär

Subtask 1: 20 Points (x ≤ 105, guaranteed possible)

To solve the first test group, we can iterate through all tower widths b < x starting at 2,
and in an inner loop test all leftmost tower heights k from 1 to x. To test whether we
have found the right parameters b and k, we can calculate the number of bricks used

kb +
b(b−1)

2 and compare with x. If they are equal, we output b.
This gives us the smallest possible b because we iterate from small to large b.
Running time is O(x2). Because it is guaranteed possible in this test group, and we

stop as soon as we find the correct b, we can improve this bound to O(x3/2).

1 #include <bits/stdc++.h>

2 using namespace std;

3 int main () {

4 int x; cin >> x;

5 for (int b = 2; b < x; b++) {

6 for (int k = 1; k < x; k++) {

7 int sum = k * b + b * (b - 1) / 2;

8 if (sum == x) {

9 cout << b << "\n";

10 return 0;

11 }

12 }

13 }

14 }

Subtask 2: 20 Points (x ≤ 1014, x odd)

This test group is very easy. If x � 1, then the answer is “IMPOSSIBLE”, as we clearly
can’t make a tower wider than 1 with just 1 brick. For all other inputs, the answer is 2;
the height of the tower is x−1

2 on the left and x+1
2 on the right.

We can combine this with the previous solution for 40 points.

Subtask 3: 60 Points (x ≤ 107)

We can easily adjust the first solution to run in O(x). Instead of testing every possible k,

we can just try to calculate k. We can reformulate x � kb +
b(b−1)

2 as k �
x− b(b−1)

2

b . Because
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k must be an integer, this just means testing if x − b(b−1)
2 is divisible by b.

1 #include <bits/stdc++.h>

2 using namespace std;

3 #define int int64_t

4 signed main () {

5 int x; cin >> x;

6 for (int b = 2; b < x; b++) {

7 if ((x - b * (b - 1) / 2) % b == 0) {

8 cout << b << "\n";

9 return 0;

10 }

11 }

12 cout << "IMPOSSIBLE\n";

13 }

Subtask 4: 80 Points (x ≤ 1014)

We can optimize the previous solution further if we observe that k can’t be negative, so

we only have to check the bs where
b(b−1)

2 ≤ x.

This solution runs in O(
√

x).

1 #include <bits/stdc++.h>

2 using namespace std;

3 #define int int64_t

4 signed main () {

5 int x; cin >> x;

6 for (int b = 2; b < x && b * (b - 1) / 2 <= x; b++) {

7 if ((x - b * (b - 1) / 2) % b == 0) {

8 cout << b << "\n";

9 return 0;

10 }

11 }

12 cout << "IMPOSSIBLE\n";

13 }

Subtask 5: 100 Points (x < 263)

For the last test group, we need to do some more mathematical analysis of the problem.

We want to solve x � kb +
b(b−1)

2 with x known for the smallest possible b, where k and b
are integers, k > 0 and b > 1.

We can rewrite the previous equation as 2x � b(2k + b − 1). From this we see that b is
a factor of 2x. We can also see that if b is even, then the other factor, 2k + b − 1, is odd,
and so b must in that case contain all the prime factors 2 in 2x.

If x is a power of two, then we would have 2k + b − 1 � 1, but this contradicts with
k > 0 and b > 1, so the answer is “IMPOSSIBLE”.

In all other cases, we can write x as x � 2a · p · r, where p is the smallest odd prime
factor of x and r is odd. Then we claim that the answer will be b � min(2a+1

, p).
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Clearly, this satisfies b > 1 and b is an integer, and because of what we saw above there
can’t be a smaller solution. Now it only remains to prove that this solution satisfies the
other conditions.

First, consider the case where b � 2a+1. We have prb � 2x � b(2k + b − 1) which leads

to k �
pr−b+1

2 . We know that pr ≥ b (otherwise we would be in the other case), so k is
positive. And because pr is odd and b even, k must be an integer.

Now for the case where b � p. Here we have 2a+1rb � 2x � b(2k + b − 1) leading to

k �
2a+1r−b+1

2 , where again 2a+1r ≥ b, so k > 0, and as b is odd k is an integer.
To use this result for writing a more efficient solution, we can first calculate 2a+1 and

pr, and answer “IMPOSSIBLE” if pr � 1 (because then x is a power of two). Otherwise,
we search for the smallest prime factor of pr. We only have to test up to

√
pr, because if

there exists a factor greater than that but smaller than pr, then there also exists a prime
factor smaller than

√
pr. We also only have to check numbers smaller than 2a+1. pr could

be a prime number itself, so we also have to consider it as a potential solution.
The running time of this solution is O(x1/3). If i is the number of iterations, then we

have i < 2a+1 and i <
√

pr. Because 2x � 2a+1 · √pr · √pr, i is maximized if both 2a+1 and√
pr are (2x)1/3.

1 #include <bits/stdc++.h>

2 using namespace std;

3 #define int int64_t

4 signed main () {

5 int x;

6 cin >> x;

7 int pa = 2;

8 while ((x & 1) == 0) { // test if x is even

9 pa = pa << 1;

10 x = x >> 1;

11 }

12 if (x == 1) {

13 cout << "IMPOSSIBLE\n";

14 return 0;

15 }

16 int b = min(pa, x);

17 for (int i = 3; i < b && i * i <= x; i++) {

18 if (x % i == 0) b = i;

19 }

20 cout << b << "\n";

21 }
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Unique Coding

Task Idea Johannes Kapfhammer
Task Preparation Martin Raszyk
Description English Martin Raszyk
Description German Martin Raszyk
Description French Simon Meinhard
Solution Martin Raszyk

Subtask 1: 50 Points

To solve the first subtask, we can generate all KN words of length N over the alphabet
with K letters and check if their encodings using the given binary code match the encoded
message from the input. Since the length of the encoded message equals M, the overall
running time of this solution is O(KN × M).

Subtask 2: 100 Points

To solve the second subtask, we use dynamic programming over prefixes of the encoded
message and numbers of letters they should decode to. More formally, we compute
the value DP[p][l] for all p � 1, . . . ,M and l � 1, . . . ,N which is defined as follows: let
enc denote the encoded message; then DP[p][l] � 0 iff enc[1..p] cannot be decoded to l
letters, DP[p][l] � 1 iff enc[1..p] can be uniquely decoded to l letters, and DP[p][l] � 2 iff
enc[1..p] can be decoded to l letters in multiple ways.

We compute the values DP[p][l] for increasing l. For l � 1, we can easily compute
DP[p][1] by checking if the prefix enc[1..p] equals the encoding of a letter. In particular,
we have DP[p][1] ∈ {0, 1}. For l > 1, we check for each letter s whose encoding is shorter
than p (i.e., |s | < p) whether it occurs as a suffix of enc[1..p], and then use the values
DP[p − |s |][l − 1], which we have computed already, to compute DP[p][l]. To reconstruct
the decoded message, we also record the unique last letter s whenever DP[p][l] � 1.

IfDP[M][N] � 0, we output “not decodable”. IfDP[M][N] � 2, we output “not uniquely decodable”.
Finally, if DP[M][N] � 1, we need to output the unique decoded message. We obtain
it backwards as follows: we can read its last letter s from back[M][N] � 1, then we
have DP[M − |s |][N − 1] � 1 and we can recursively compute the unique decoding of
enc[1..(M − |s |)] (i.e., the encoded message without the last letter s) to N − 1 letters. This
way, we compute a letter from the decoded message in O(1) and the whole messsage can
be reconstructed in time O(N).

Computing a single value DP[p][l] can be performed in time O(KM) (there are K letters
to check and the encoding of each of them has length at most M). In total, there are
O(MN) values DP[p][l] to compute which yields the overall running time in O(NM2K).

The overall space complexity of this solution is in O(M(N + K)).
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Subtask 3: Even better solution

For an even better solution (which was not needed), we need to quickly find the letters
whose encodings equal to a suffix of enc[1..p], for all p. For a fixed letter s, we can find
all p such that s is a suffix of enc[1..p] using KMP in time O(M). In total, this requires
extra time and space both in O(KM), but allows to compute a single value DP[p][l] in
time O(K). Altogether, this brings the overall running time down to O(NMK) and does
not affect the asymptotic space complexity.
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Skiing Resort

Task Idea Monika Steinova
Task Preparation Monika Steinova
Description English Monika Steinova
Description German Stefanie Zbinden
Description French Florian Gatignon
Solution Monika Steinova

We model the problem as a pair of directed graphs G, H, each on vertices 1 through
n. Two vertices a,b are connected in G by a directed edge of length c if there is a cable
car going from a to b that takes c minutes. Similarly, we add all ski-slopes from a to b
lasting c minutes as directed edges in the graph H going from a to b with length c.

Let d(p , q) denote the shortest directed path from p to q in G. Similarly, let D(p , q) be
the longest directed path from p to q in H. We are looking into a pair of vertices (p , q)
such that the ratio

D(q , p)
d(p , q)

is maximised.
One possible approach is to check all ordered pairs (p , q), calculate the respective

distances and find the optimal one. For the problem of finding the shortest path, we can
use a variety of algorithms, e.g. Dĳkstra, Bellman-Ford or Floyd-Warshall.

The problem of finding the longest path between two vertices p and q is, on general
graphs, NP-hard, i.e., there is no efficient (polynomial) algorithm exists unless P = NP
(which is mostly considered to be false). Luckily, our graph is rather special. Note that
the ski slopes only go from a junction of higher elevation to a junction of a lower one. As
such, there can be no directed cycles in the graph of ski slopes. This is called a directed
acyclic graph (DAG). Directed acyclic graphs have many useful properties, and countless
problems hard on general graphs are efficiently solvable on DAGs. Longest path is one of
these problems. We outline three approaches in the order of decreasing time complexity.

Subtask 1: 25 + 25 Points (n ≤ 500, k ,m ≤ 500)

One strategy to find the longest path is to use Floyd-Warshall’s algorithm with a slight
modification: initially all pairs of vertices not connected by an edge have a distance −∞.
In the innermost loop, max is used instead of min.

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {

d[i][j] = inf

D[i][j] = -inf

}

}
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for ((a,b,c) in G.edges) {

d[a][b] = c

}

for ((a,b,c) in H.edges) {

D[a][b] = c

}

for (int k = 0; k < n; ++k) {

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {

d[i][j] = min(d[i][j], d[i][k] + d[k][j])

D[i][j] = max(D[i][j], D[i][k] + D[k][j])

}

}

}

We use Floyd-Warshall for finding all d(p , q) and the max-version of Floyd-Warshall
for finding all D(p , q) in O(n3). Then we find the optimal pair of junctions in O(n2).

Make sure to represent the ratio of skiing to riding cable car as a fraction (a pair of two
integers), and not a floating point number, which may be imprecise. To check which of
the two fractions is larger without using floating point arithmetic, we use the fact that

a

b
≤ c

d
⇐⇒ ad ≤ bc .

Subtask 2: 25 Points (n ≤ 1000, k ,m ≤ 2000)

In the previous section we used Floyd-Warshall that has cubic time complexity, which
becomes too slow in the third subtask. The issue with Floyd-Warshall is that it is efficient
only for dense graphs. For sparse graphs, more efficient methods exist, such as Dĳkstra’s
algorithm. To adapt the Dĳkstra’s algorithm to finding the maximum distance, we can
use a similar trick as in previous section, i.e., using maximum instead of minimum to
update distances. Note that to select the vertex for processing, the one with the smallest

distance from the source among the unprocessed ones is selected, as in the original
Dĳkstra’s algorithm.

In a single run of Dĳkstra’s algorithm or the max-Dĳkstra, we find all d(p , q), D(p , q),
respectively, for a fixed p. We simply run the algorithm n times to calculate all d(p , q)
and D(p , q) and proceed as before.

The total time complexity is O(n(m + k) log n).
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Subtask 3: 25 Points (n ≤ 2000, k ,m ≤ 4000)

We can also get rid of the logarithmic factor, again thanks to the fact our graph is a DAG.
All DAGs have a property of admitting a topological sort. A topological sort is a relabelling
of vertices to 1 through n, such that all edges are of format (a , b) where a < b. A DAG
may have more than one topological sort, but finding one of them is a relatively simple
problem, solved as follows:

for (int i = 1; i <= n; ++i) {

select any vertex v with zero incoming edges

labelling[v] = i

remove vertex v and all outgoing edges from the graph

}

If we maintain a set or a queue of vertices with indegree 0, the above can be performed
in O(|E |), where E is the set of edges.

A topological sort can be leveraged to solve various problems on a DAG using dynamic
programming, and shortest path is one of them. Let d[i] be the distance from a fixed p to
vertex i, initially d[i] � ∞ and d[p] � 0. We process the vertices in topological order, and
upon processing vertex j, we update the shortest path to be

d[k] � min(d[k], d[ j] + c( j, k)) ,

where c( j, k) is the length of the edge from j to k (if present).
This correctness of the algorithm can be proved by induction. It is trivially true for the

source vertex. Assume that all vertices i < k have already been processed and d[i] is the
shortest distance from source to i. As a result, d[k] is the shortest distance from source
to k.

Similar to what we did before, substituting ∞ with −∞ and min(·, ·) with max(·, ·)
gives an algorithm for the longest distance. This pair of dynamic programming solutions
is run n times, once for each starting vertex. As the complexity of each run is O(m + k),
the overall complexity is O(n(m + k)).
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