
Round 2P, 2021

Task gummybears

Gummy Bears

Mouse Stofl loves gummy bears, and he loves to eats them in a special way. A pack of gummy
bears has n gummy bears. Each gummy bear has some flavour, given as an integer.

Stofl wants to eat the pack by repeatedly taking mouthfuls of k gummybears (where it is
guaranteed that k divides n). A mouthful of gummy bears is yummy if there is a majority flavour,
i.e. there is some flavour of gummy bears that occurs in strictly more than k/2 gummy bears of
that mouthful. If there is no majority flavour, Stofl finds the mouthful to be yucky.

For example, if we have k � 4, a mouthful must contain strictly more than k/2 � 2, i.e. at least
3 flavours of the same kind.

Yuck! There is no majority flavour. Yummy! Green is the majority flavour.

Is it possible for Stofl to eat the gummy bears in such a way that all mouthfuls are yummy? If
yes, print a possible way to eat them.

Input

The first line of the input contains the three integers n, k and p – the number of gummy bears n,
the size of a mouthful k and p, whether you also have to print how to eat it (if p � 0 you don’t
have to print it, if p � 1 then you do).

The second line contains n integers fi – the flavours of the gummy bears.

Output

If it is possible to eat the gummy bears such that all mouthfuls are tasty, print “Yummy!” on the
first line, else print “Yuck!”.

If p � 1 and your first line was “Yummy!”, you should also print out a way how to eat them.
For that print n/k lines, containing k numbers each: the i-th of those lines should contain the
flavours you want to put on the i-th mouthful. You can use each flavour as many times as it
occurs in the input.

For p � 0, all lines except for the first one are ignored.
If there are multiple possibilities, you may print any of them.

Limits

There are eight subtasks. In all subtasks, 1 ≤ k ≤ n.

For odd subtasks (1, 3, 5 and 7), we have p � 0.

For even subtasks (2, 4, 6 and 8), we have 0 ≤ p ≤ 1.

In the samples, p � 1. If you plan to solve only the subtasks with p � 0, you can still see in the
verdict whether the first line was correct.

• Subtasks 1 and 2, worth 10 points each: n ≤ 100 000, 0 ≤ fi < n/k and each flavour occurs
exactly k times. In other words, the values fi contain exactly k times 0, k times 1, etc., and k
times n/k − 1.

• Subtasks 3 and 4, worth 10 points each: n ≤ 100 000 and 0 ≤ fi < 2, i.e. there are at most 2
different flavours.

• Subtasks 5 and 6, worth 10 points each: n ≤ 1000 and 0 ≤ fi < n.

1/2

Round 2P, 2021

Task gummybears

• Subtasks 7 and 8, worth 20 points each: n ≤ 100 000 and 0 ≤ fi < 10
9.

Examples

6 3 1

1 0 0 0 0 1

Yummy!

0 0 1

0 1 0

This input would be valid for subtasks 3, 4, 5, 6, 7 and 8, if we disregard the value of p. The solution looks
like this (with red � 0 and blue � 1):

16 4 1

0 0 0 1 1 1 1 1 1 1 1 1 3 3 4 4

Yummy!

0 0 0 3

1 1 1 3

1 1 1 4

1 1 1 4

This input would be valid for subtasks 5, 6, 7 and 8, disregarding p.

12 3 1

0 0 0 0 0 1 2 2 2 3 4 5

Yuck!

This input would be valid for subtasks 5, 6, 7 and 8, disregarding p.

4 2 1

0 1 0 0

Yuck!

This input would be valid for subtasks 3, 4, 5, 6, 7 and 8, disregarding p.

12 4 1

0 1 2 2 1 1 1 0 2 2 0 0

Yummy!

0 0 0 0

1 1 1 1

2 2 2 2

This input would be valid for subtasks 1, 2, 5, 6, 7 and 8, disregarding p.

2/2

Round 2P, 2021

Task waterview

Water View

Mouse Stofl is constructing a hiking path between two lakes. The path consists of n segments,
where segment i is at height hi . The two lakes are at height 0, and are positioned before the
0-th and after the (n − 1)-th segment, respectively. Stofl wants to make the hike as beautiful as
possible. A segment i of the hike is beautiful if you can see a lake, i.e. there is a lake such that
there is no segment higher than hi between segment i and that lake. The beauty of the hike is
the number of beautiful segments it contains. Stofl may replace exactly one segment with an
additional lake, also at height 0. That lake also counts as a beautiful segment. (Since the hike
may not have any gaps, Stofl builds a bridge across the lake, from which you can obviously see
the lake.)

Below is a visualization of example 3. The beautiful segments are marked green.

Before After

This is the situation before building the addi-
tional lake. Three of the segments don’t have
any water view, therefore it has beauty 4.

After building a new lake in the middle, all
but one segment become beautiful and the
new beauty is 6.

Input

The first line of the input contains an integer n, the number of segments. The next line contains n

integers hi , the heights of the segments.

Output

Print a single integer, the maximal number of beautiful segments Stofl can achieve.

Limits

In all testcases 1 ≤ hi ≤ 10
9 and 1 ≤ n ≤ 500 000.

• In the first test group, worth 30 points, 1 ≤ n ≤ 500.

• In the second test group, worth 30 points, 1 ≤ n ≤ 10 000.

• In the third test group, worth 40 points, there are no further restrictions.

Examples

3

2 1 3

3

Stofl may replace any of the three segments with a lake in order to make all segments beautiful.

1/2

Round 2P, 2021

Task waterview

7

3 4 1 2 1 3 2

7

The segment with height 2 is the only segment Stofl can convert in order to make all segments beautiful.

7

3 4 1 2 3 1 3

6

Stofl cannot make all segments beautiful. If he converts the segment with height 2, six segments will be
beautiful. This example is shown in the visualization above.

2/2

Round 2P, 2021

Task slidingmouse

Sliding mouse

Mouse Daniel is standing in the middle of an ice field. The ice field is a rectangular grid of size
n × m, consisting of three types of tiles:

• Wall tiles “#”: Mouse Daniel can’t move onto these tiles.

• Ice tiles “+”: When moving onto such a tile, mouse Daniel slides over it, so he’ll move off
the tile in the same direction (unless there is a wall in that direction, in which case he comes
to a stop).

• Dirt tiles “.”: When moving onto such a tile, mouse Daniel stops. He may move off the tile
in any of the 4 directions.

There are two special dirt tiles:

• Start tile “d”: Mouse Daniel starts here.

• Goal tile “g”: Mouse Daniel wins if he reaches this tile.

Mouse Daniel moves at a speed of one tile per second. Can you help him reach the goal as
soon as possible?

Input

The first line contains two integers n and m. After that, m lines follow, each containing n

characters. Each character is one of #, +, ., d, g. d and g appear exactly once. All border tiles are #.

Output

Output the number of seconds which mouse Daniel needs to reach the goal, or “IMPOSSIBLE” if
the goal cannot be reached.

Limits

There are 4 test groups, each of which is worth 25 points.

• In test group 1, we have n ,m ≤ 100 and there are no ice tiles.

• In test group 2, we have n ,m ≤ 100.

• In test group 3, we have n ,m ≤ 1000.

• In test group 4, we have n ,m ≤ 2000.

Examples

8 5

########

#.++g#.#

#.+++.d#

#..+..+#

########

5

Daniel can’t walk up and then left, because there is a wall in the way. If he walks two steps left, he would
slide across the ice up to the left wall, and it would take 9 seconds to reach the goal. A faster way is to first
walk down (he will be stopped by the wall), two steps left and then slide across the ice to the goal.

1/2

Round 2P, 2021

Task slidingmouse

5 3

#####

#d#g#

#####

IMPOSSIBLE

Unfortunately, the goal tile is behind a wall, so mouse Daniel can’t reach it.

2/2

Round 2P, 2021

Task ladderbalcony

Ladder Balcony

Mouse Binna has just finished building a huge tower and now she wants to build a balcony for it.
She doesn’t just want a regular boring balcony, no, the balcony should be made out of ladders.
This would allow her to climb up and down while enjoying the sunset.

If we picture the tower on the left and the sunset in the front-right, then the ladders may be set
up as follows: The leftmost ladder has to be bolted to the tower and every other ladder has to
be bolted to the ladder directly to the left of it. In order for two ladders to be bolted together
properly, then need to share an edge, not just a corner.

Additionally, there can never be two ladders above each other with a gap between them, as
Mouse Binna could fall down and break her legs if she doesn’t see the gap.

Valid Invalid

The tower is H mousemeters high and mouse Binna estimates that the tower can support
ladders up to W mousemeters out. She has already bought a ladder that is N mousemeters long
and 1 mousemeter wide. She may cut this ladder into various pieces, but for aesthetic reasons,
all those pieces have to be an integer number of mousemeters long. She will then bolt the pieces
together to build her balcony.

Using a drone, Mouse Binna has already mapped out how much sunlight the H × W area in
front of her tower gets. She would like to maximize the total number of sunlight that her balcony
gets. Can you help her figure this out?

Input

The first line of the input contains three integers H, W and N – the height of the tower, the
maximum distance the balcony may extend outwards and the number of mousemeters of ladder
at mouse Binna’s disposal. The next H lines each contain W integers ai , j describing the sunlight
in front of her tower.

Output

Print a single integer – the maximum total amount of sunlight mouse Binna can have on her
balcony.

Limits

In all test cases 1 ≤ H,W,N and N ≤ H · W and 0 ≤ ai , j ≤ 10
6.

• In the first subtask (20 points), we have H,W,N ≤ 20.

• In the second subtask (20 points), we have H,W,N ≤ 40.

• In the third subtask (20 points), we have H,W,N ≤ 80.

• In the fourth subtask (20 points), we have H ≤ 100, W ≤ 80 and N ≤ 100.

• In the fifth subtask (10 points), we have H ≤ 120, W ≤ 50 and N ≤ 120.

• In the sixth subtask (10 points), we have H ≤ 130, W ≤ 30 and N ≤ 130.

1/2

Round 2P, 2021

Task ladderbalcony

Examples

2 3 3

1 2 3

7 8 9

24

7 6 10

2 6 1 1 2 9

6 2 9 1 9 3

7 5 6 8 2 6

5 6 5 4 5 4

6 7 3 6 3 8

4 1 4 5 2 1

3 2 5 4 6 3

65

2/2

	Gummy Bears
	Input
	Output
	Limits
	Examples

	Water View
	Input
	Output
	Limits
	Examples

	Sliding mouse
	Input
	Output
	Limits
	Examples

	Ladder Balcony
	Input
	Output
	Limits
	Examples

