
SOI 2P 2022

Solution Booklet

Swiss Olympiad in Informatics

10–14 March 2022

Round 2P, 2022
Task candles

Candles
Task Idea Johannes Kapfhammer
Task Preparation Florian Gatignon
Description English Florian Gatignon
Description German Joël Huber
Description French Florian Gatignon
Solution Florian Gatignon

You are given # points with integer coordinates G0 , . . . , G#−1 on an axis, an integer and a
starting coordinate B. Your goal is to find the shortest way to start at B and visit of those #
points. To achieve this, you may need to go in one direction and then in the other direction, for
example if some points are too far away or if there aren’t points on either side of B. You only
had to output the length of the shortest way to do this.

Note, first, that it is always optimal to use a sequence of points at coordinates :0 ≤ · · · ≤ : −1
such that among the other # − points, none has a coordinate strictly between :0 and : −1. The
reason is simple: otherwise, we could cut the total length of the path by using any such point
instead of one of the points at :0 or : −1. That means that we only have to look at # − + 1
candidate sets of points, but to find those easily, we have to sort the coordinates G0 , · · · , G#−1,
which takes O(# log#). This is the first step of our algorithm.

Assume, then, that the coordinates are now sorted, so G0 ≤ · · · ≤ G#−1. The candidate sets of
points are {G0 , · · · , G −1}, {G1 , · · · , G }, · · · , {G#− , · · · , G#−1}. The key to making the algorithm
fast enough to get a full score is to compute the distance for each of these sets in O(1). Checking
all possible sets would then take a total of O(#), so the total runtime would still be O(# log#).
To compute the total distance for the set {G8 , · · · , G8+ −1} in O(1), it is useful to observe that

this distance only depends on B, G8 and G8+ −1. From B, we must travel to the closest of G8 and
G8+ −1. Then, we need to traverse the whole set. If G8 < B < G8+ −1, we will travel twice between
B and one extremity, but since it is the closest extremity from B, this distance is optimal for the
given set (the distance travelled twice is the smallest possible, and we have to traverse the whole
set anyway). Therefore, the optimal distance for that set is min(|G8 − B |, |G8+ −1 − B |) + G8+ −1 − G8 .
The best of those values for 0 ≤ 8 <= # − is the full solution.

The full algorithm is then as follows:

1. Read the input (O(#)).
2. Sort the coordinates (O(# log#).
3. Set the best answer yet to∞ (O(1)).
4. For every 0 ≤ 8 ≤ # − , compute the answer for the set {G8 , · · · , G8+ −1}. If this is smaller

than the current best answer yet, store it as the best answer yet (# times O(1), so O(#)).
5. Print the best answer yet, which is the best answer overall (O(1)).

In total, the runtime is O(# log#). We use O(#) storage for the input and O(1) additional
memory. A C++ implementation of this algorithm can be found on the next page.

2/15

Round 2P, 2022
Task candles

1 #include <soi>
2 signed main() {
3 // getting the input //
4 int N = read_int(), K = read_int(), s = read_int();
5 vector<int> x(N);
6 for(int i = 0; i < N; i++)
7 x[i] = read_int();
8 sort(x.begin(), x.end()); // O(N*log(N))
9 int sol = 1e15; // ~ infinity

10 // solving the task //
11 for(int i = 0; i+K<=N; i++) { // go through all candidate K-length segments
12 // x[i+K-1]-x[i]: total length of the segment
13 // min(abs(s-x[i]),abs(s-x[i+K-1])): shortest way to an extremity of the segment
14 int candidate = min(abs(s-x[i]),abs(s-x[i+K-1]))+x[i+K-1]-x[i];
15 sol = min(sol, candidate);
16 }
17 // printing the result //
18 print(sol);
19 }

3/15

Round 2P, 2022
Task departure

Order of Departure
Task Idea Johannes Kapfhammer, Timon Gehr
Task Preparation Timon Gehr
Description English Timon Gehr
Description German Timon Gehr
Description French Mathieu Zufferey
Solution Timon Gehr

Note that we can model the friendships as a graph, where vertices are mice and there is an
edge between two mice if and only if they are friends. We have to order the vertices of the graph
such that if we direct edges from vertices that are earlier in the order to vertices that are later in
the order, each vertex has a specified in-degree (corresponding to the number of received cheese
balls).

Subtask 1: Subtask 1 (30 points)
In subtask 1," = # · (# − 1)2, which means that our graph is complete. This means the number
of received cheese balls is precisely the number of mice that were already at the party before
each mouse. Therefore, this number is also the (1-based) index of the unique order in which the
mice could have arrived. We can therefore simply print the mice in this order:

1 #include <bits/stdc++.h> // score: 30
2 using namespace std;
3

4 int main(){
5 int n;
6 cin>>n;
7 vector<int> solution(n,-1);
8 for(int i=0;i<n;i++){
9 int cheese;

10 cin>>cheese;
11 solution[cheese-1]=i;
12 }
13 int m;
14 cin>>m;
15 for(int i=0;i<n;i++){
16 cout<<solution[i]<<" \n"[i+1==n];
17 }
18 }

This solution runs in $(#) time.

Subtask 2: Subtask 2
In subtask 2, not all mice are necessarily friends, therefore we cannot directly read off the result
anymore. However, we can make the following observations:

• There is always at least one mouse that received one cheese ball (the first mouse to arrive
gets exactly one cheese ball, from Mouse Stofl).

• Whenever a mouse receives exactly one cheese ball, we can make it leave first. This is
because it has to depart before any of its friends (otherwise it should have gotten a cheese
ball from such a friend) and it does not influence the number of cheese balls obtained by
any other mouse.

• Conversely, a mouse that obtained exactly one cheese ball must have given a cheese ball to
all its friends (except Mouse Stofl).

• If we consider an instance where the first mouse to depart never attended the party at all,
all its friends in the original instance obtain one fewer cheese ball.

4/15

Round 2P, 2022
Task departure

A possible algorithm therefore works as follows:
It builds a valid departure order one element at a time. If the position of a mouse in the

departure order has already been determined, we will say that that mouse departed. The other
mice are still partying. You can imagine that Mouse Stofl sends them home one by one as he
executes the algorithm. Mouse Stofl does not count as still partying, because he is busy sending
people home and it simplifies exposition.

We will also imagine that we have in mind some specific possible departure order to which
we can extend the current one. In the beginning, we can imagine we have an arbitrary possible
order, as it is guaranteed to exist by the task statement. We may have to change it later to another
possible solution to accommodate the actual decisions made by the algorithm.

We maintain the number of cheese balls that each mouse still at the party obtained from mice
who have already departed.

In each step, the algorithm selects a mouse that should depart next. There is at least one mouse
that has received no cheese ball from mice that are still partying (the first mouse in our imagined
valid departure order). The algorithm picks any one of them and send it home. Possibly, there
are multiple such mice and the algorithm did not pick the first mouse in our imagined valid
departure order. In this case, we can change the imagined valid departure order by dragging this
mouse to the first spot as well, maintaining the relative order of all other mice. This does not
change the required number of cheese balls for any mouse: Some mice currently remaining at
the party were scheduled to depart before our mouse. They cannot be friends with our mouse as
it did not receive any cheese balls from them. The remaining mice maintain their relative order
to all other mice. Therefore, the changed imagined departure order is still valid.

Whenever a mouse departs, we loop through all of its friends and reduce the number of cheese
balls received from mice that are still at the party by one (as one of their friends just departed).
(Technically, it’s sufficient to only loop over friends that are still partying, but values for other
mice do not matter anymore, so it’s okay if they become negative.)
In the end, we have sent all mice home and their order of departure therefore matches our

imagined valid departure order. Therefore, our solution is also valid.
We can implement this algorithm naively as follows:

1 #include <bits/stdc++.h> // score: 50
2 using namespace std;
3

4 int main(){
5 int n;
6 cin>>n;
7 vector<int> cheese(n);
8 for(int i=0;i<n;i++){
9 cin>>cheese[i];

10 --cheese[i]; // ignore Stofl's cheese
11 }
12 int m;
13 cin>>m;
14 vector<vector<int>> g(n);
15 for(int j=0;j<m;j++){
16 int a,b;
17 cin>>a>>b;
18 g[a].push_back(b);
19 g[b].push_back(a);
20 }
21 for(int i=0;i<n;i++){
22 int current=-1;
23 for(int k=0;k<n;k++){ // find mouse that got no cheese
24 if(cheese[k]==0)
25 current=k;
26 }
27 assert(current!=-1); // solution has to exist
28 for(int next:g[current]) // reduce friend's cheese
29 --cheese[next];
30 cheese[current]=-1; // no longer consider mouse
31 cout<<current<<" \n"[i+1==n]; // send it home

5/15

Round 2P, 2022
Task departure

32 }
33 }

This solution runs in time $(#2).

Subtask 3: Subtask 3
We can implement the same algorithm more cleverly: instead of checking all mice in each step,
we maintain a queue with all mice that could depart now. Every time we reduce the number of
cheese balls received from mice that are still partying, we can check if it hits zero. If so, we add it
to the queue. Then in each step we can just pick a mouse that is ready to leave from the queue.

1 #include <bits/stdc++.h> // score: 70
2 using namespace std;
3

4 int main(){
5 int n;
6 cin>>n;
7 vector<int> cheese(n);
8 queue<int> ready;
9 for(int i=0;i<n;i++){

10 cin>>cheese[i];
11 if(--cheese[i]==0){ // find mice that could leave first
12 ready.push(i);
13 }
14 }
15 int m;
16 cin>>m;
17 vector<vector<int>> g(n);
18 for(int j=0;j<m;j++){
19 int a,b;
20 cin>>a>>b;
21 g[a].push_back(b);
22 g[b].push_back(a);
23 }
24 for(int i=0;i<n;i++){
25 assert(!ready.empty()); // solution has to exist
26 int current=ready.front(); // find mouse that got no cheese
27 ready.pop();
28 for(int next:g[current]){ // reduce friend's cheese
29 if(--cheese[next]==0) // note new departure candidates
30 ready.push(next);
31 }
32 cheese[current]=-1; // no longer consider mouse
33 cout<<current<<" \n"[i+1==n]; // send it home
34 }
35 assert(ready.empty());
36 }

This solution runs in time $(# +"), because each friendship is only considered three times:
once when it is read and once each when the involved mice depart.

Subtask 4: Subtask 4
Recall the only mice that can depart first at any given moment are those who have not received
any cheese balls from mice who are still partying. To lexicographically minimize our solution,
we first and foremost have to minimize the first element of the solution and then ensure the
remainder of the solution is again lexicographically minimal among all possible ways to extend
our solution. Therefore, it suffices to, among the mice that may depart, pick the one with the
smallest index in each time step:

6/15

Round 2P, 2022
Task departure

1 #include <bits/stdc++.h> // score: 65
2 using namespace std;
3

4 int main(){
5 int n;
6 cin>>n;
7 vector<int> cheese(n);
8 for(int i=0;i<n;i++){
9 cin>>cheese[i];

10 --cheese[i]; // ignore Mouse Stofl's cheese
11 }
12 int m;
13 cin>>m;
14 vector<vector<int>> g(n);
15 for(int j=0;j<m;j++){
16 int a,b;
17 cin>>a>>b;
18 g[a].push_back(b);
19 g[b].push_back(a);
20 }
21 for(int i=0;i<n;i++){
22 int current=-1;
23 for(int k=0;k<n;k++){ // find mouse that got no cheese
24 if(cheese[k]==0){
25 current=k;
26 break; // pick the one with smallest index
27 }
28 }
29 for(int next:g[current]) // reduce friend's cheese
30 --cheese[next];
31 cheese[current]=-1; // no longer consider mouse
32 cout<<current<<" \n"[i+1==n]; // send it home
33 }
34 }

This solution runs in time $(#2).

Subtask 5: Subtask 5
We can use basically the same optimization we used to improve the solution to subtask 2 to be
fast enough for subtask 3: We maintain a queue of all mice who could currently depart. From
those, we have to always pick the one with lowest index, so we will in fact use a priority queue
that is ordered by mouse index:

1 #include <bits/stdc++.h> // score: 100
2 using namespace std;
3

4 int main(){
5 int n;
6 cin>>n;
7 vector<int> cheese(n);
8 // prioritize mice with small index:
9 priority_queue<int,vector<int>,greater<int>> ready;

10 for(int i=0;i<n;i++){
11 cin>>cheese[i];
12 if(--cheese[i]==0){ // find mice that could leave first
13 ready.push(i);
14 }
15 }
16 int m;
17 cin>>m;
18 vector<vector<int>> g(n);
19 for(int j=0;j<m;j++){
20 int a,b;
21 cin>>a>>b;
22 g[a].push_back(b);

7/15

Round 2P, 2022
Task departure

23 g[b].push_back(a);
24 }
25 for(int i=0;i<n;i++){
26 assert(!ready.empty()); // solution has to exist
27 int current=ready.top(); // find smallest mouse that got no cheese
28 ready.pop();
29 for(int next:g[current]){ // reduce friend's cheese
30 if(--cheese[next]==0) // note new departure candidates
31 ready.push(next);
32 }
33 cheese[current]=-1; // no longer consider mouse
34 cout<<current<<" \n"[i+1==n]; // send it home
35 }
36 assert(ready.empty());
37 }

This solution runs in time (# log# +"), as we have to execute # push and pop operations on
the priority queue.

8/15

Round 2P, 2022
Task timber

Timber!
Task Idea Joël Huber
Task Preparation Johannes Kapfhammer
Description English Johannes Kapfhammer
Description German Timon Gehr
Description French Florian Gatignon
Solution Johannes Kapfhammer

This task may look tricky on first glance because in order to build a solution, you need to know
the constraints (which is the answer: 3), but you can’t know that before having a solution.

Subtask 1: Binary Search
Luckily for us, we have monotonicity: if there is a solution for 3, there is also a solution for 3 − 1
(the solution for 3 is still valid for 3 − 1). Conversly, if there is no solution for 3 there is also no
solution for 3 + 1 (strengthening the constraint does not help us finding a solution).

This means we can use binary search find the answer.

1 #include <bits/stdc++.h>
2 #define int int64_t
3 using namespace std;
4

5 int best(vector<int> const& v, int d) {
6 // compute best solution for fixed d
7 }
8

9 signed main() {
10 cin.exceptions(ios::badbit | ios::eofbit | ios::failbit);
11 ios::sync_with_stdio(false);
12 size_t n, s; cin >> n >> s;
13 vector<int> v;
14 copy_n(istream_iterator<int>(cin), n, back_inserter(v));
15

16 int l=0, r=n+1;
17 while (r-l > 1) {
18 int m = (l+r)/2;
19 if (best(v, m) >= s)
20 l = m;
21 else
22 r = m;
23 }
24 if (l == 0)
25 cout << "Impossible\n";
26 else if (l == n)
27 cout << "Infinity\n";
28 else
29 cout << l << '\n';
30 }

It is important to handle the edge cases properly:

• If the sum of all values is smaller than B then the output should be “Impossible”.
• And if the largest value is larger or equal to B then the answer is “Infinity”.

The binary search above does that automatically. We have ; = 0 as indicator for impossible
(note that best is never called with 0, because < can only be 0 for ; = 0 and A = 1, but then the
binary search is done). Similarly, we set the right bound to = + 1 to indicate infinity. Also note
here that best is never called with = + 1.
So what remains is coming up with strategies to find the best solution given 3.

9/15

Round 2P, 2022
Task timber

As so often with binary search, we change the problem statement slightly: we don’t want to
know whether it is possible for some 3, but rather “what is the maximal amount of wood for some
3” – and then compare that answer with B.

Subtask 2: Taking every d-th element (40 Points)
If the input is increasing, we can just take every 3-th element, starting with the biggest one.

1 int best(vector<int> const& v, int d) {
2 int ans = 0;
3 for (int i=(int)v.size() - 1; i >= 0; i -= d)
4 ans += v[i];
5 return ans;
6 }

Subtask 3: DP (100 Points)
Fo the full solution you can do a DP approach:

DP[8] = max amount of wood we can take from ℎ0 , ℎ1 , . . . , ℎ8

= max


DP[8 − 1] if 8 > 0 (ignore ℎ8 and take from 0 to 8 − 1)
DP[8 − 3] + ℎ8 if 8 ≥ 3 (take ℎ8 and the best solution from 3 trees before)
ℎ8 if 8 < 3 (only take ℎ8 , can’t take anything else)

To avoid the case distinction or out of bound checks in the code one can make the DP table
= + 3 long.

1 int best(vector<int> const& v, int d) {
2 vector<int> dp(n+d);
3 for (int i=0; i<n; ++i)
4 dp[i+d] = max(dp[i+d-1], dp[i] + v[i]);
5 return dp.back();
6 }

The best function runs in O(=) time and space, therefore the full solution with binary search
around it runs in O(= log =) time and O(=) space.

10/15

Round 2P, 2022
Task rpggameplay

RPG Gameplay
Task Idea Jan Schär, Petr Mitrichev
Task Preparation Joël Huber
Description English Joël Huber
Description German Joël Huber
Description French Florian Gatignon
Solution Joël Huber

General Observations - Part 1
Let < be the maximal number of monsters Stofl can hit. Then the solution is going to be = + 1−<.
Thus it suffices to calculate the maximal number of monsters that Stofl can hit.

Observation 1: It is always optimal to hit a monster if an arm is available.
Proof: Suppose there is a an optimal solution that doesn’t hit a monster even if an arm is

available and consider the first occasion this happens, let it be monster 8. Without loss of
generality, the left arm is available. Then consider the next time the left arm is used and let it
be monster 9. Consider the solution where instead of monster 9, we attack monster 8. This new
solution will hit the same number of monsters and thus is optimal as well. We can repeat this
argument or use induction to do it formally to see that there is an optimal solution which always
attacks when the arm is available.

Subtask 1, A →∞
This subtask can be solved greedily: Consider only the left arm and forget the right arm for the
moment. Then by observation 1, we can just greedily always attack the next possible monster.
Then we have one "joker"-attack with the right arm, as we can attack with it exactly once. But
note that the right arm can only hit an additional monster if the left arm didn’t hit all of them.

1 from sys import stdin
2

3 n, l, r = map(int, stdin.readline().split())
4 pos = map(int, stdin.readline().split())
5

6 cr = 0
7 res = 0
8 for nx in pos:
9 if cr <= nx:

10 res += 1
11 cr = nx + l
12

13 if res != n:
14 res += 1
15

16 print(n + 1 - res)

Subtask 3, = ≤ 16
Let " be the set of monsters and (be a subset of the monsters. Then we can check how many
monsters we can defeat if the left arm only hits monsters in (and the right arm only monsters
in " \ (. By applying the greedy strategy from earlier to both subsets, we can find the highest
number of monsters we can beat respecting the partition. So we can just loop through all subsets
(of ", checking every partition. This runs in O(=2=).

11/15

Round 2P, 2022
Task rpggameplay

1 def greedy(arr, d):
2 cr = 0
3 cres = 0
4 for nx in arr:
5 if cr <= nx:
6 cres += 1
7 cr = nx + d
8 return cres
9

10 best = 0
11 for i in range(1<<n):
12 a = []
13 b = []
14 for j in range(n):
15 if i & (1<<j) > 0:
16 a.append(pos[j])
17 else:
18 b.append(pos[j])
19 best = max(best, greedy(a, l) + greedy(b, r))
20 print(n + 1 - best)

Subtask 4, = ≤ 3 · 103

Let’s first precompute two arrays: arr;[8] is the next monster that can be attacked with the left
arm if we attack monster 8 with it. Define arrA[8] analogously. arr; and arrA can be calculated
using two pointers:

1 def next_pos(n, pos, df):
2 l, r = 0, 0
3 arr = []
4 for l in range(n + 1):
5 while r < n and pos[r] - pos[l] < df:
6 r += 1
7 arr.append(r)
8 return arr
9

10 arr_l = next_pos(n, pos, l)
11 arr_r = next_pos(n, pos, r)

Consider the following 2-dimensional dp: dp[8][9] is the maximal number of monsters that can
be defeated until the end if the next monster attacked by the left arm is the 8-th monster or later,
and the next monster attacked by the right arm is the 9-th monster or later. Note that it might be
a bit tricky to make sure that 8 and 9 don’t attack the same monster: E. g. if you calculate dp[8][9],
it might depend on the state dp[9][:] and then it can happen that it kills monster 9 both when
calculating dp[8][9] and when calculating dp[9][:]. However, if we do the transitions nicely, we
can fix this:

1 for i in range(n, -1, -1):
2 for j in range(n, -1, -1):
3 if (i < n):
4 dp[i][j] = max(dp[i][j], dp[i + 1][j])
5 if (j < n):
6 dp[i][j] = max(dp[i][j], dp[i][j + 1])
7 if (i < j):
8 dp[i][j] = max(dp[i][j], dp[arr_l[i]][j] + 1)
9 if (i > j):

10 dp[i][j] = max(dp[i][j], dp[i][arr_r[j]] + 1)

Note that we always move the arm that is further behind. This dp takes O(=2) time and O(=2)
memory. For subtask 5, this results in either RE or MLE, as it exceeds the memory limit. (And
even if it passed the memory limit, it would probably get TLE as getting that much memory is
slow). In the next section, we will now prove why this dp never attacks a monster twice.

12/15

Round 2P, 2022
Task rpggameplay

General Observations - Part 2
Lemma 1: When walking through the states (8 , 9), if we only attack with the arm that is currently
further behind, then we will never hit a monster twice.

Proof: Suppose monster with index 8 gets hit both by the left and the right arm. Without loss
of generality, when going through the different states, we hit it with the left arm first. Look at
the state (8 , 9) when we decide to hit monster 8 with the left arm. There are two cases: If 8 < 9,
then we can never hit the monster with index 8 with the right arm, as when we go continue
going through the states, the position of the right arm will never decrease. If 8 > 9, this is then a
contradiction to the fact that we always attack with the arm that’s further behind.

Note that this lemma doesn’t allow us to attack a monster if 8 = 9 holds (as no arm is further
behind). However, if we want to attack this monster with let’s say the left arm, then we can walk
through the states like this: (8 , 8) → (8 , 8 + 1) → (arr;[8], 8 + 1) to attack monster 8.

General Observations - Part 3
Note that from observation 1, we can already build a semi-greedy strategy: Let B; and BA be
the next monster that the left respectively the right arm can attack. Consider the following
semi-greedy:

1 if B; < BA then
2 Attack B; with the left arm
3 else if B; > BA then
4 Attack BA with the right arm
5 else if B; = BA then
6 There are two things we could do:
7 - Move BA forward by 1 monster (and continue with the greedy)
8 - Move B; forward by 1 monster (and continue with the greedy)
9 Try both options and take the one that kills more monsters.

By Lemma 1, we will never hit any monster twice when using this strategy.

Subtask 2, ; = A

Consider the semi-greedy from earlier. Consider the third case (B; = BA). As in this case ; = A, the
two options we are trying out are the exactly the same, as the left and the right arm have the
same cooldown. So we can just hit the monster with any arm and a simple greedy works again:

1 #include <iostream>
2 #include <vector>
3

4 using namespace std;
5

6 signed main()
7 {
8 ios_base::sync_with_stdio(0);
9 cin.tie(0);

10

11 int n;
12 int l, r;
13 cin >> n >> l >> r;
14

15 int s_l = -1, s_r = -1;
16 int res = n + 1;
17

18 for (int i = 0; i < n; i++)
19 {
20 int x;

13/15

Round 2P, 2022
Task rpggameplay

21 cin >> x;
22 if (s_l <= x) res--, s_l = x + l;
23 else if (s_r <= x) res--, s_r = x + r;
24 }
25 cout << res << "\n";
26 }

Note that this code also solves subtask 1, as it always uses the left arm when it’s available.

Subtask 5, = ≤ 2 · 104

Consider the following dp: dp[8] is the maximal number of monsters that can be defeated if we
only consider the monsters starting from 8 to the end. Note that we have both arms available to
attack monster 8. Then We can calculate 3?[8] by testing both possibilities of attacking it (left or
right arm), and then apply the greedy algorithm as long as B; ≠ BA . As soon as B; = BA we can just
take the value of dp[B;].
1 pos.push_back((int)(2e9+100));
2

3 vector<int> arr_l = next_pos(n, pos, l);
4 vector<int> arr_r = next_pos(n, pos, r);
5

6 vector<int> dp(n + 1, 0);
7

8 auto check = [&](int s_l, int s_r)
9 {

10 int res = 0;
11

12 while (s_l != s_r)
13 {
14 res++;
15 if (s_l < s_r) s_l = arr_l[s_l];
16 else s_r = arr_r[s_r];
17 }
18

19 return res + dp[f];
20 };
21

22 for (int i = n - 1; i >= 0; i--) dp[i] = max(check(i, i + 1), check(i + 1, i));
23 cout << n + 1 - dp[0] << "\n";

This uses O(=2) time and O(=)memory, which is good enough for = ≤ 2 · 104.
Note that sometimes not all dp states need to be calculated. In fact, if you only calculate the dp

states we need (e. g. by recursion or by using a stack or in some different way), this will actually
run in O(=) for subtask 2. Can you figure out why?

Subtask 6, = ≤ 106, Full solution
Let’s fix one arm and look at it’s trace while “pulling the other arm with it”. Without loss of
generality, ; ≤ A.
Consider the semi-greedy from earlier and consider a state (B; , BA) = (8 , 9) in this semi-greedy.

As we will always move the arm that is further behind, C 9 ≤ C8 + A always holds. Now let’s look at
a new dp defined by dp[8][9] being the maximal number of monsters that can be slain if the left
arm ends at position 8 and the right arm ends at position 9. Note that this dp moves forwards,
we are considering the monsters between 0 and 8, and not as before the mosnters between 8 and
the end. By the observation of the semi-greedy, it suffices to look at states where C 9 ≤ C8 + A
holds. Now suppose that we’re considering a state in the dp where 9 < 8. Then we can greedily
move 9 forwards. Thus the only states we need to consider in the dp are states (8 , 9) such that
C8 ≤ C 9 ≤ C8 + A.

Lemma 2: Let G8 be the smallest index such that C8 ≤ CG8 ≤ C8 + A holds and such that
dp[8][G8] = max

C8≤C 9≤C8+A

(
dp[8][9]

)
. Then if there is an optimal solution passing through some state

14/15

Round 2P, 2022
Task rpggameplay

(8 , 9), then there is also a solution passing through (8 , G8).
Proof: Consider an optimal solution going through (8 , 9). If now 9 = G8 , we’re done. If 9 > G8 ,

then consider the following solution: Take the configuration for state (8 , G8) until the state and
continue with the configuration for (8 , 9) afterwards. This solution can’t be worse than the other
optimal solution by definition of G8 , thus there is an optimal solution going through (8 , G8). In the
remaining case 9 < G8 . Consider the following solution: Take the configuration for (8 , G8) until
G8 . Then take the configuration for (8 , 9) except for the first monster we hit with the right arm.
Then by definition of G8 , we now that the configuration of (8 , G8) will hit at least one monster
more than the configuration of (8 , 9), but we lose one monster later on. Thus our solution hits
the same number of monsters than the initial optimal solution. So we only need to prove that
we can actually do this. Indeed, the next monster that we are going to hit appears at time
C: ≥ C 9 + A ≥ C8 + A ≥ CG8 , which proves that this solution is valid. Thus there is indeed an optimal
solution going through (8 , G8).
From Lemma 2, we learn that we only need to consider states of the form (8 , G8). Thus let

opt[8] = (dp[8][G8], G8). When we are processing opt[8], either 8 is behind or 8 is at the same
location than 9. Thus we can always move with the left arm (8) and then “drag” the other arm
along, which means we greedily move it along. Either we attack with the left arm, which means
updating arr;[8], or we can not attack the monster (which means updating 8 + 1). Note that we
only need to do the second step if opt[8][0] = 8. And note again that we need to take care not
to attack a monster twice by checking whether opt[8][0] = 8 holds when we attack with the left
arm. Whenever we update some future-state however, we need to greedily attack with the right
arm. Since ; ≤ A holds, we only need some amount in O(1) steps until the right arm is back in the
interval [C8′ , C8′ + A], where 8′ is the state we moved to. Thus the running time of this algorithm is
in O(=). In code, it looks like this:

1 if (l > r) swap(l, r); // Note: If you forget this, then it will be slow
2

3 vector<int> arr_l = getnextarr(n, pos, l);
4 vector<int> arr_r = getnextarr(n, pos, r);
5 vector<pair<int,int>> dp(n + 1, make_pair(-1e9, n + 1));
6 dp[0] = make_pair(0, 0);
7

8 auto update = [&](int ind, int v, int ot)
9 {

10 if (v > dp[ind].first) dp[ind].first = v, dp[ind].second = ot;
11 if (v == dp[ind].first) dp[ind].second = min(dp[ind].second, ot);
12 };
13

14 for (int curr = 0; curr < n; curr++)
15 {
16 int nx = arr_l[curr];
17 int s = dp[curr].second;
18 // Don't forget this! Otherwise we will hit the monster with intex "curr" twice
19 if (s == curr) s++;
20 int res = dp[curr].first + 1;
21 while (s < nx) { res++; s = arr_r[s]; }
22 update(nx, res, s);
23

24 // Note that we only need to do what follows if if dp[curr].second == curr.
25 // However, the code is shorter without the if-statement, and it doesn't make
26 // anything slow or incorrect
27 nx = curr + 1;
28 s = dp[curr].second;
29 res = dp[curr].first;
30 while (s < nx) { res++; s = arr_r[s]; }
31 update(nx, res, s);
32 }
33

34 cout << n + 1 - dp[n].first << "\n";

15/15

	Candles
	Order of Departure
	Subtask 1 (30 points)
	Subtask 2
	Subtask 3
	Subtask 4
	Subtask 5

	Timber!
	Binary Search
	Taking every d-th element (40 Points)
	DP (100 Points)

	RPG Gameplay

