
SOI 2P 2023

Solution Booklet

Swiss Olympiad in Informatics

10–14 March 2023

Round 2P, 2023
Task waterflow

Waterflow
Task Idea Charlotte Knierim
Task Preparation Charlotte Knierim
Description English Charlotte Knierim
Description German Charlotte Knierim
Description French Benjamin Faltin
Solution Charlotte Knierim

We are given a sequence of tap and drain opening and closing times and want to calculate the
maximum amount of water that is in Binnas pool at any point in time. Throughout this booklet
we will refer to 𝑡 = 𝑚𝑎𝑥𝑖{𝑒𝑖} as the time Binna is in the house.

Subtask 1: 𝑐 ≥ 0
If there are no drains, then we only have water flowing into the pool. Clearly, in this case the
maximum is attained when the last tab is closed. We can view the tabs independently and just
calculate for every tap. The water flowing in through tap 𝑖 will be (𝑒𝑖 − 𝑠𝑖) · 𝑐𝑖 .
1 //score: 20
2

3 #include<bits/stdc++.h>
4

5 #define int long long
6

7 using namespace std;
8

9

10 signed main(){
11 int m;
12 cin >> m;
13

14 int sum = 0;
15

16 for(int i=0;i<m;++i) {
17 int s,e,c;
18 cin >> s >> e >> c;
19

20 sum += (e-s)*c;
21 }
22

23 cout << sum << '\n';
24

25 }

Subtask 2: 𝑚 ≤ 1000 and 𝑡 ≤ 104

In this case we can find a solution that runs in 𝑂(𝑚 · 𝑡). For this, we can just have an array of all
minutes and when we read in a tap or drain we go trough all minutes this tap/drain is active
and add 𝑐𝑖 to the change in this minute. Afterwards we do a summation of the changes while
keeping track of the maximum.
1 //score: 40
2

3 #include<bits/stdc++.h>
4 #define int long long
5

6 using namespace std;
7

2/20

Round 2P, 2023
Task waterflow

8 signed main(){
9 int m;

10 cin >> m;
11

12 vector<vector<int>> flows;
13 int max_t = 0;
14 for(int i = 0; i< m; ++ i) {
15 int s, t, f;
16 cin >> s >> t >> f;
17 flows.push_back(vector<int>({s,t,f}));
18 max_t = max(t,max_t);
19 }
20

21 vector<int> changes(max_t,0);
22

23 for(int i = 0; i<m;++i) {
24 int s = flows[i][0];
25 int t = flows[i][1];
26 int f = flows[i][2];
27

28 for(int j = s; j<t;++j) {
29 changes[j] += f;
30 }
31 }
32

33 int max_v = 0;
34 int v = 0;
35

36 for(int i = 0 ; i<max_t; ++i) {
37 //cout << changes[i] <<'\n';
38 v += changes[i];
39 v = max(v,0LL);
40 max_v = max(max_v,v);
41 }
42

43 cout << max_v << '\n';
44 }

Subtask 3: 𝑡 ≤ 106

In this subtask we will see a solution that is linear in 𝑡. Similarly to the solution of subtasks 2 we
keep track of the change in every minute, this time we are a bit more clever, noting the change of
the change when reading the input.
1 //score: 60
2

3 #include<bits/stdc++.h>
4 #define int long long
5

6 using namespace std;
7

8 signed main(){
9 int m;

10 cin >> m;
11

12 vector<vector<int>> flows;
13 int max_t = 0;
14 for(int i = 0; i< m; ++ i) {
15 int s, t, f;
16 cin >> s >> t >> f;
17 flows.push_back(vector<int>({s,t,f}));
18 max_t = max(t,max_t);
19 }
20

21 vector<int> change(max_t+1,0);
22

3/20

Round 2P, 2023
Task waterflow

23 for(int i = 0; i<m;++i) {
24 int s = flows[i][0];
25 int t = flows[i][1];
26 int f = flows[i][2];
27

28 change[s] += f;
29 change[t] -= f;
30

31 }
32

33 vector<int> changes(max_t+1,0);
34 changes[0] = change[0];
35 for(int i = 1;i<max_t;++i){
36 changes[i] = changes[i-1]+change[i];
37 }
38

39 int max_v = 0;
40 int v = 0;
41

42 for(int i = 0 ; i<max_t; ++i) {
43 //cout << changes[i] <<'\n';
44 v += changes[i];
45 v = max(v,0LL);
46 max_v = max(max_v,v);
47 }
48

49 cout << max_v << '\n';
50 }

Subtask 4: no further restrictions
We can solve this problem using a scanline. Creating events for the changes and sorting them
results in a runningtime of 𝑂(𝑚 log𝑚).
1 //score: 100
2 #include <bits/stdc++.h>
3 using namespace std;
4 typedef long long ll;
5

6 int main() {
7 cin.tie(0); ios::sync_with_stdio(NULL);
8 int m; cin >> m;
9 vector<pair<int,int>> a(2*m);

10 for (int i=0;i<m;i++) {
11 int s,e,c; cin >> s >> e >> c;
12 a[2*i] = {s,c}; a[2*i+1] = {e,-c};
13 }
14 sort(a.begin(),a.end());
15 ll l = 0, mx = 0, vol = 0, f = 0;
16 for (auto [t,s]: a) {
17 vol = max(vol+f*(t-l),0LL); mx = max(vol,mx);
18 f += s; l = t;
19 }
20 cout << mx;
21 }

4/20

Round 2P, 2023
Task embroideries

Embroideries
Task Idea Andrew Stankevich
Task Preparation Daniel Rutschmann, Charlotte Knierim
Description English Priska Steinebrunner, Charlotte Knierim
Description German Charlotte Knierim
Description French Benjamin Faltin
Solution Timon Gehr

Subtask 1: 1 ≤ 𝑛 ≤ 16
There are at most 2𝑛 ≤ 216 = 65′536 subsequences. We can enumerate all of them by using the
binary representation of the numbers 0 to 2𝑛 − 1 as a mask for indices that should occur in a
subsequence. For each of the subsequences, we can check whether it is balanced and keep track
of all balanced subsequences we can find in this way in a set. In the end, we simply print the size
of the set.
1 #include <bits/stdc++.h> // score: 25
2 using namespace std;
3

4 bool is_balanced(const string &subsequence){
5 int count=0;
6 bool result=true;
7 for(char c : subsequence){
8 count += (c=='(')-(c==')');
9 result &= 0<=count;

10 }
11 result &= count==0;
12 return result;
13 }
14

15 int main(){
16 int n;
17 cin>>n;
18 string pattern;
19 cin>>pattern;
20 if(n<=16){
21 set<string> seen;
22 // loop through all masks of subsequences
23 for(int mask=0; mask<(1<<n); mask++){
24 // extract subsequence
25 string subsequence;
26 for(int i=0; i<n; i++){
27 if(mask & (1<<i)){
28 char c = pattern[i];
29 subsequence.push_back(c);
30 }
31 }
32 // record all distinct balanced ones
33 if(is_balanced(subsequence)){
34 seen.insert(subsequence);
35 }
36 }
37 cout<<seen.size()<<'\n';
38 }
39 }

This solution runs in 𝑂(2𝑛 · 𝑛 log 𝑛), which is enough to score all points for this subtask.

We can alternatively use a vector<bool> by encoding bracket sequences as integers and combine
the production and consumption of subsequences in a way that avoids memory allocations as
follows:

5/20

Round 2P, 2023
Task embroideries

1 #include <bits/stdc++.h> // score: 25
2 using namespace std;
3

4 int main(){
5 int n;
6 cin>>n;
7 string pattern;
8 cin>>pattern;
9 if(n<=16){

10 int num_subseq=1<<n;
11 int num_nodes=(1<<(n+1))-1;
12 vector<bool> seen(num_nodes);
13 for(int mask=0;mask<num_subseq;mask++){
14 bool is_balanced=true;
15 int sequence=0, count=0;
16 for(int i=0; i<n; i++){
17 if(mask & (1<<i)){
18 char c=pattern[i];
19 count +=(c=='(')-(c==')');
20 is_balanced &= 0<=count;
21 if(c=='(') sequence = 2*sequence+1;
22 else sequence = 2*sequence+2;
23 }
24 }
25 is_balanced &= count==0;
26 seen[sequence] = is_balanced;
27 }
28 int result=0;
29 for(bool s : seen) result+=s;
30 cout<<result<<'\n';
31 }
32 }

This also gets rid of the log factor, yielding a running time of 𝑂(2𝑛 · 𝑛).

Subtask 2: 1 ≤ 𝑛 ≤ 36
In this subtask, there are up to 236 = 68′719′476′736 subsequences. We can no longer hope to
enumerate all of them.

However, note that we can rephrase the task slightly using simple double counting: Instead
of computing the number of subsequences that are balanced, we can compute the number of
balanced strings of parentheses that occur as subsequences.

We can compute the number of balanced strings up to length 36 exactly, as
∑18

𝑘=0 𝐶𝑘 = 656′043′857,
where 𝐶𝑘 is the 𝑘-th Catalan number, given by 𝐶𝑘 =

1
𝑘+1

(2𝑘
𝑘

)
. Unfortunately, this is still too large to

explicitly enumerate.

However, we can do the following trick: We will count the number of balanced strings of
parentheses of length 2 · 𝑘 that occur as subsequences of the pattern, for each 𝑘 between 0 and 18.
Then, the result will just be the sum of the results for each 𝑘.

How to compute the result for a specific 𝑘? Consider all 2𝑘 bracket sequences of length 𝑘. For
each sequence 𝑠, we compute the following information:

• Can it be the beginning of a balanced bracket sequence? If so, compute:

– The length 𝑝𝑠 of the shortest prefix of the pattern such that the sequence 𝑠 appears as
a subsequence of that prefix. (We ignore the sequence if there is no such prefix.)

– The number of brackets 𝑏𝑠 that still need to be closed in a string 𝑧 that is appended to
𝑠 to form a balanced sequence of brackets.

• Can it be the end of a balanced bracket sequence? If so, compute:

6/20

Round 2P, 2023
Task embroideries

– The length 𝑞𝑧 of the shortest suffix of the pattern such that the sequence 𝑧 appears as
a subsequence of that suffix. (We ignore the sequence if there is no such suffix.)

– The number of brackets 𝑑𝑠 that have to be opened in a string 𝑠 prepended to 𝑧 to form
a balanced sequence of brackets.

Then, the final result is given by
∑

𝑠

∑
𝑧[𝑝𝑠 + 𝑞𝑧 ≤ 𝑛][𝑏𝑠 = 𝑑𝑧]. (I.e., for each pair of sequences

(𝑠, 𝑧), each sequence of length 𝑘, their concatenation should be counted as a balanced sequence
that occurs in the pattern iff 𝑠 occurs as a subsequence in a prefix that does not overlap with a
suffix within which 𝑧 occurs as a subsequence, and the number of opened brackets in 𝑠 matches
the number of closed brackets in 𝑧.)

We can compute this sum quickly enough by summarizing sequences with the same values for
(𝑏𝑠 , 𝑝𝑠) and (𝑑𝑠 , 𝑞𝑠) respectively. (The final sum could be further optimized using prefix sums,
but this is not really necessary in this case as 𝑛 is so small.)

The following program implements this solution. We precompute a reversed version (including
reversed parentheses) of the pattern such that we can reuse most of the code related to balance
and prefix length computations.
1 #include <bits/stdc++.h> // score: 50
2 using namespace std;
3

4 #define sz(v) (int)(v).size()
5

6 int get_balance(const string &subsequence){
7 int count=0;
8 for(char c : subsequence){
9 count += (c=='(')-(c==')');

10 if(count < 0){
11 return -1;
12 }
13 }
14 return count;
15 }
16

17 int extend_prefix(const string &pattern, int shortest_prefix, char next){
18 for(;;){
19 if(shortest_prefix>=sz(pattern))
20 return sz(pattern)+1;
21 if(pattern[shortest_prefix]==next)
22 return shortest_prefix+1;
23 ++shortest_prefix;
24 }
25 }
26

27 int shortest_prefix(string &pattern, string &subsequence){
28 int result=0;
29 for(char c : subsequence){
30 result = extend_prefix(pattern, result, c);
31 }
32 return result;
33 }
34

35 int main(){
36 int n;
37 cin>>n;
38 string pattern;
39 cin>>pattern;
40 string pattern_reverse=pattern;
41 reverse(pattern_reverse.begin(), pattern_reverse.end()); // reverse string
42 for(char &c:pattern_reverse) c ^= '('^')'; // reverse parentheses
43 if(n<=36){
44 int result=0;
45 for(int k=0;k<=n/2;k++){
46 auto prefixes = vector<vector<int>>(k+1, vector<int>(n+1, 0));

7/20

Round 2P, 2023
Task embroideries

47 auto suffixes = vector<vector<int>>(k+1, vector<int>(n+1, 0));
48 string s(k, '\0');
49 for(int sequence=0; sequence<(1<<k); sequence++){
50 for(int i=0;i<k;i++){
51 s[i] = ((sequence & (1 << i)) ? ')' : '(');
52 }
53 int balance = get_balance(s);
54 if(0<=balance && balance<=k){
55 int prefix = shortest_prefix(pattern, s);
56 if(prefix<=n){
57 ++prefixes[balance][prefix];
58 }
59 int suffix = shortest_prefix(pattern_reverse, s);
60 if(suffix<=n){
61 ++suffixes[balance][suffix];
62 }
63 }
64 }
65 for(int balance=0; balance<=k; balance++){
66 for(int p=0; p<=n; p++){
67 for(int pp=0; p+pp<=n; pp++){
68 result += prefixes[balance][p]*suffixes[balance][pp];
69 }
70 }
71 }
72 }
73 cout<<result<<'\n';
74 }
75 }

This solution runs in time 𝑂(2𝑛/2 · 𝑛2). Note that above we have shown that the result is always
smaller than 109 + 7, so we did not have to bother with taking remainders.

Another way to write the shortest_prefix function that may appear a little more natural is to
have an outer loop that goes over the pattern instead:
1 int shortest_prefix(string &pattern, string &subsequence){
2 int n=sz(pattern), m=sz(subsequence);
3 if(m==0) return 0;
4 for(int i=0, j=0; i<n; i++){
5 if(pattern[i]==subsequence[j]){
6 if(++j==m){
7 return i+1;
8 }
9 }

10 }
11 return sz(pattern)+1;
12 }

However, it will be more convenient for further solutions to have the outer loop over the
subsequence.

Subtask 3: 1 ≤ 𝑛 ≤ 200
To do even better, let’s first consider again the solution approach where we enumerate all
balanced sequences of brackets and check whether they occur in the pattern. The following code
implements this solution:
1 #include <bits/stdc++.h> // score: 25
2 using namespace std;
3

4 #define sz(v) (int)(v).size()
5

6 int n;
7

8 vector<string> balanced;

8/20

Round 2P, 2023
Task embroideries

9 void enumerate(string &cur,int balance){
10 if(balance<0 || balance>n-sz(cur)){
11 return;
12 }
13 if(balance==0){
14 balanced.push_back(cur);
15 }
16 if(sz(cur)<n){
17 cur.push_back('(');
18 enumerate(cur,balance+1);
19 cur.back()=')';
20 enumerate(cur,balance-1);
21 cur.pop_back();
22 }
23 }
24

25 string pattern;
26

27 int extend_prefix(int shortest_prefix, char next){
28 for(;;){
29 if(shortest_prefix>=n)
30 return n+1;
31 if(pattern[shortest_prefix]==next)
32 return shortest_prefix+1;
33 ++shortest_prefix;
34 }
35 }
36

37 int is_subsequence(string &candidate){
38 int shortest_prefix=0;
39 for(char c : candidate){
40 shortest_prefix = extend_prefix(shortest_prefix, c);
41 }
42 return shortest_prefix<=n;
43 }
44

45 int main(){
46 cin>>n>>pattern;
47

48 string cur="";
49 enumerate(cur,0);
50

51 int r=0;
52 for(string &candidate: balanced){
53 r += is_subsequence(candidate);
54 }
55 cout<<r<<'\n';
56 }

As we have noted before, the number of balanced bracket sequences grows exponentially fast,
and in fact this solution only scores points for the first subtask.

However, it turns out that we can optimize this solution to get a vastly better asymptotic running
time.

First, we will inline the subsequence check into the enumeration, such that we only enumerate
sequences that are actually subsequences. This also allows an improvement to the pruning check
that aborts if the balance gets too high.
1 #include <bits/stdc++.h> // score: 50
2 using namespace std;
3

4 #define sz(v) (int)(v).size()
5

6 int n;
7 string pattern;
8

9 int extend_prefix(int shortest_prefix,char next){

9/20

Round 2P, 2023
Task embroideries

10 for(;;){
11 if(shortest_prefix>=n)
12 return n+1;
13 if(pattern[shortest_prefix]==next)
14 return shortest_prefix+1;
15 ++shortest_prefix;
16 }
17 }
18

19 int result=0;
20 void enumerate(string &cur,int balance,int shortest_prefix){
21 if(balance<0 || balance>n-shortest_prefix || shortest_prefix>n){
22 return;
23 }
24 if(balance==0){
25 result+=1;
26 }
27 if(sz(cur)<n){
28 cur.push_back('(');
29 enumerate(cur,balance+1,extend_prefix(shortest_prefix,'('));
30 cur.back()=')';
31 enumerate(cur,balance-1,extend_prefix(shortest_prefix,')'));
32 cur.pop_back();
33 }
34 }
35

36 int main(){
37 cin>>n>>pattern;
38

39 string cur="";
40 enumerate(cur,0,0);
41

42 cout<<result<<'\n';
43 }

This is actually enough of an optimization to solve the second subtask again: even though it
is not feasible to enumerate all subsequences of the pattern of length 𝑛 ≤ 36 nor all balanced
sequences up to length 𝑛 ≤ 36 individually, it is actually feasible to enumerate all subsequences
that are balanced.

Now we can make the following observations:

• The contents of the string cur are never actually used, therefore we don’t need to compute
it at all. It suffices to keep track of its length.

• Instead of updating the result as a side effect of the enumerate procedure, we can compute
the total change to the result internally to the function and return it.

• The function extend_prefix can be written recursively instead of with a for loop.

If we implement those changes, we are left with the following solution:
1 #include <bits/stdc++.h> // score: 50
2 using namespace std;
3

4 #define sz(v) (int)(v).size()
5

6 int n;
7 string pattern;
8

9 int extend_prefix(int shortest_prefix,char next){
10 if(shortest_prefix>=n)
11 return n+1;
12 if(pattern[shortest_prefix]==next)
13 return shortest_prefix+1;
14 return extend_prefix(shortest_prefix+1,next);
15 }
16

10/20

Round 2P, 2023
Task embroideries

17 int solve(int length,int balance,int shortest_prefix){
18 if(balance<0 || balance>n-shortest_prefix || shortest_prefix>n){
19 return 0;
20 }
21 int result=0;
22 if(balance==0){
23 result+=1;
24 }
25 if(length<n){
26 result += solve(length+1,balance+1,extend_prefix(shortest_prefix,'('));
27 result += solve(length+1,balance-1,extend_prefix(shortest_prefix,')'));
28 }
29 return result;
30 }
31

32 int main(){
33 cin>>n>>pattern;
34 cout<<solve(0,0,0)<<'\n';
35 }

This solution still runs in exponential time, but we can now actually easily optimize it, because
both functions can only be called with a very limited number of different arguments. Therefore,
many of the function calls will actually yield the same result. We can simply memoize the results
to get a dynamic programming solution that runs in polynomial time. Note that now we also
need to take into account results that are larger than 109 + 7.
1 #include <bits/stdc++.h> // score: 75
2 using namespace std;
3

4 #define sz(v) (int)(v).size()
5 const int MOD=(int)1e9+7;
6

7 void add(int &a, int b){
8 a += b;
9 if(a>=MOD) a-=MOD;

10 }
11

12 int n;
13 string pattern;
14

15 vector<array<int,2>> memo_ep;
16 int extend_prefix(int shortest_prefix,char next){
17 if(shortest_prefix>=n)
18 return n+1;
19 int &mem=memo_ep[shortest_prefix][next==')'];
20 if(mem!=-1) return mem;
21 if(pattern[shortest_prefix]==next)
22 return shortest_prefix+1;
23 return mem=extend_prefix(shortest_prefix+1,next);
24 }
25

26 vector<vector<vector<int>>> memo;
27 int solve(int length,int balance,int shortest_prefix){
28 if(balance<0 || balance>n-shortest_prefix || shortest_prefix>n){
29 return 0;
30 }
31 int &mem=memo[length][balance][shortest_prefix];
32 if(mem!=-1) return mem;
33 int result=0;
34 if(balance==0){
35 add(result, 1);
36 }
37 if(length<n){
38 add(result, solve(length+1,balance+1,extend_prefix(shortest_prefix,'(')));
39 add(result, solve(length+1,balance-1,extend_prefix(shortest_prefix,')')));
40 }
41 return mem=result;

11/20

Round 2P, 2023
Task embroideries

42 }
43

44 int main(){
45 cin>>n>>pattern;
46 memo_ep.assign(n, {-1, -1});
47 memo.assign(n+1, vector<vector<int>>(n+1, vector<int>(n+1,-1)));
48 cout<<solve(0,0,0)<<'\n';
49 }

This solution runs in time and space 𝑂(𝑛3).

Subtask 4: 1 ≤ 𝑛 ≤ 3′000
Note that the parameter length is only used to check whether the length of the current
subsequence is still below 𝑛. This check is not really necessary anymore because the enumeration
terminates once the current bracket sequence no longer appears as a subsequence of the pattern.
It is therefore easy to eliminate the length parameter. There are various other ways to write a
solution that will pass subtask 3 but not subtask 4 as a result of too many factors of 𝑛 in the
running time .

If we get rid of length, the resulting solution scores 100 points:
1 #include <bits/stdc++.h> // score: 100
2 using namespace std;
3

4 #define sz(v) (int)(v).size()
5 const int MOD=(int)1e9+7;
6

7 void add(int &a, int b){
8 a += b;
9 if(a>=MOD) a-=MOD;

10 }
11

12 int n;
13 string pattern;
14

15 vector<array<int,2>> memo_ep;
16 int extend_prefix(int shortest_prefix,char next){
17 if(shortest_prefix>=n)
18 return n+1;
19 int &mem=memo_ep[shortest_prefix][next==')'];
20 if(mem!=-1) return mem;
21 if(pattern[shortest_prefix]==next)
22 return shortest_prefix+1;
23 return mem=extend_prefix(shortest_prefix+1,next);
24 }
25

26 vector<vector<int>> memo;
27 int solve(int balance,int shortest_prefix){
28 if(balance<0 || balance>n-shortest_prefix || shortest_prefix>n){
29 return 0;
30 }
31 int &mem=memo[balance][shortest_prefix];
32 if(mem!=-1) return mem;
33 int result=0;
34 if(balance==0){
35 add(result, 1);
36 }
37 add(result, solve(balance+1,extend_prefix(shortest_prefix,'(')));
38 add(result, solve(balance-1,extend_prefix(shortest_prefix,')')));
39 return mem=result;
40 }
41

42 int main(){
43 cin>>n>>pattern;

12/20

Round 2P, 2023
Task embroideries

44 memo_ep.assign(n, {-1, -1});
45 memo.assign(n+1, vector<int>(n+1,-1));
46 cout<<solve(0,0)<<'\n';
47 }

13/20

Round 2P, 2023
Task megajump

Mega jump
Task Idea Charlotte Knierim, Michał Stawarz, Johannes Kapfhammer
Task Preparation Jan Schär
Description English Jan Schär
Description German Jan Schär
Description French Benjamin Faltin
Solution Jan Schär

Subtask 1: Only walking
In this subtask, a mega jump is the same as walking diagonally, which means we can ignore mega
jumps. In each step, we can move by at most one in either direction, so we need at least max(𝑥, 𝑦)
steps. And we can reach the goal in max(𝑥, 𝑦) steps, by first walking diagonally for min(𝑥, 𝑦)
steps, and then walking the remaining steps either horizontally or vertically, depending on which
coordinate is larger.
1 // score: 10
2 #include <bits/stdc++.h>
3 using namespace std;
4

5 int main () {
6 int k, l, q;
7 cin >> k >> l >> q;
8

9 for (int qi = 0; qi < q; qi++) {
10 int x, y;
11 cin >> x >> y;
12 cout << max(x, y) << "\n";
13 }
14 }

This solution runs in 𝑂(1) time.

Subtask 2: Jumping horizontally
Here, mega jumps only change the horizontal position. That means we need to walk at least 𝑦
steps to reach the correct vertical position. To make the most out of these unavoidable steps, we
can walk them diagonally. If 𝑦 > 𝑥, then we can already reach the target with this, so the answer
is 𝑦. Otherwise, we will have a remaining horizontal distance of 𝑥 − 𝑦 which we can cover with
a combination of steps and mega jumps. A single mega jump replaces 𝑘 steps, so we should
make ⌊ 𝑥−𝑦

𝑘
⌋ mega jumps at least. In this case, the total number of steps we make (horizontal and

diagonal) is 𝑥 − ⌊ 𝑥−𝑦
𝑘
⌋ · 𝑘 (this is the remaining horizontal distance after making ⌊ 𝑥−𝑦

𝑘
⌋ mega

jumps).

It might be better to make one additional mega jump, because then we might reduce the number
horizontal steps. But making more than one additional mega jump cannot help, because even
with one we are already past the point which can be reached by walking only diagonally. We
can then use the solution from subtask 1 for calculating the number of steps. We need at least 𝑦
steps, but if we jump far enough that the horizontal distance 𝑥 − (⌊ 𝑥−𝑦

𝑘
⌋ + 1) · 𝑘 is bigger than

𝑦, then that is the number of steps. Rather than trying to find out whether we should make an
additional mega jump, we can just calculate both and take the minimum.
1 // score: 30
2 #include <bits/stdc++.h>
3 using namespace std;

14/20

Round 2P, 2023
Task megajump

4

5 int solve (int k, int l, int x, int y) {
6 if (y > x) return y;
7 int min_jumps = (x - y) / k;
8 return min(
9 min_jumps + x - min_jumps * k,

10 (min_jumps + 1) + max(y, (min_jumps + 1) * k - x)
11);
12 }
13

14 int main () {
15 int k, l, q;
16 cin >> k >> l >> q;
17

18 for (int qi = 0; qi < q; qi++) {
19 int x, y;
20 cin >> x >> y;
21 cout << solve(k, l, x, y) << "\n";
22 }
23 }

This solution runs in 𝑂(1) time.

Subtask 3: Small distance
In this subtask, the distance is small, so we can use an inefficient solution which just tries out
all possibilities. We can make several simple observations: The order of moves does not matter,
so we only need to know how many we make of each possible move. There are four different
mega jumps, but a (𝑘, 𝑙) and a (−𝑘,−𝑙) jump cancel each other out. So rather than saying we
have 𝑎 times (𝑘, 𝑙) and 𝑏 times (−𝑘,−𝑙), we could just say we have 𝑎 − 𝑏 times (𝑘, 𝑙). The same
argument holds for (𝑘,−𝑙) and (−𝑘, 𝑙). That means we only need to consider two types of mega
jumps. Once the mega jumps are fixed, we can then use the solution from subtask 1 to calculate
the number of steps.

To summarize, our strategy is to try out all combinations of numbers of (𝑘, 𝑙) and (𝑘,−𝑙) jumps in
some range, and for each compute the number of steps. Then we take the minimum of all these
possibilities. The question that remains is how big the range should be that we try out. A simple
upper bound is max(𝑥, 𝑦) – we know that we need this many steps when not using mega jumps,
so we certainly don’t want to make more mega jumps than this.
1 // score: 20
2 #include <bits/stdc++.h>
3 using namespace std;
4

5 int solve (int k, int l, int x, int y) {
6 int d = numeric_limits<int>::max();
7 int limit = max(x, y);
8 for (int s1 = -limit; s1 <= limit; s1++) {
9 for (int s2 = -limit; s2 <= limit; s2++) {

10 d = min(
11 d,
12 abs(s1) + abs(s2) +
13 max(abs(x - k * (s1 + s2)), abs(y - l * (s1 - s2)))
14);
15 }
16 }
17 return d;
18 }
19

20 int main () {
21 int k, l, q;
22 cin >> k >> l >> q;
23

24 for (int qi = 0; qi < q; qi++) {

15/20

Round 2P, 2023
Task megajump

25 int x, y;
26 cin >> x >> y;
27 cout << solve(k, l, x, y) << "\n";
28 }
29 }

This solution runs in 𝑂(max(𝑥, 𝑦)2) time.

Subtask 4: General solution
Now, we need an efficient solution which works in all cases. We can approach this by repeatedly
converting the problem into a simpler one, until we can solve it directly.

The points that are reachable with only mega jumps form a kind of grid where half the points
are missing, and this is inconvenient to work with. But consider what happens when we make
exactly two mega jumps: we can reach the points (2𝑘, 0), (0, 2𝑙), and (2𝑘, 2𝑙). (Here we ignore
jumps with negative coordinates, because they don’t help when we want to reach a point with
non-negative coordinates.) This is very similar to walking. We can see that with an even number
of mega jumps, the reachable points form a nice grid with 2𝑘 horizontal and 2𝑙 vertical spacing.
And to reach a point (𝑎 · 2𝑘, 𝑏 · 2𝑙), we need 2 max(𝑎, 𝑏) moves. When we have an odd number of
mega jumps instead, then the grid is simply shifted by (𝑘, 𝑙). If we already have a solution for the
even case, we can call it with the target shifted by (−𝑘,−𝑙) and then add one extra move. We can
just try both even and odd, and take the minimum.

Now, we have a simpler problem: We can walk steps as before, which take 1 move, and we can
make jumps of (𝑘, 0), (0, 𝑙), and (𝑘, 𝑙), which take 2 moves. (Here, 𝑘 and 𝑙 are doubled compared
to before, because otherwise we would have a factor 2 everywhere we use them.) We want to
minimize walking, because jumping uses fewer moves. To do that, we first compute the minimum
number of steps which are required to reach the target no matter what. Then, we calculate how
many jumps are required, given this number of steps. However, it is possible that we need one
jump less if we make one step more, and since jumps take 2 moves, we save a move in total.
Again, we can just try with or without an extra step and take the minimum. Walking more than
one additional step won’t help, because we would need to walk at least min(𝑘, 𝑙) more steps to
further decrease the number of jumps.

To compute the minimum number of steps: In the 𝑥-direction, if 𝑘 = 0, then we can’t jump in that
direction and need to walk 𝑥 steps. Otherwise, we jump to the closest multiple of 𝑘. 𝑥 mod 𝑘
is the number of remaining steps after ⌊ 𝑥

𝑘
⌋ jumps, and if we make one more jump, we walk

𝑘 − (𝑥 mod 𝑘) steps in the other direction. Because we can walk diagonally, the overall minimum
number of steps is the maximum of the two dimensions.

To compute the number of jumps, given the number of steps: We can subtract the number of
steps from 𝑥 and 𝑦 (clamping to zero if negative), this is the closest we can get by walking the
given number of steps diagonally. Then, we calculate how many jumps we need in each direction
to reach at least that far.
1 // score: 100
2 #include <bits/stdc++.h>
3 using namespace std;
4

5 int solve_jumps (int k, int l, int x, int y, int steps) {
6 int jumps = max(
7 k == 0 ? 0 : (max(x - steps, 0L) + k - 1) / k,
8 l == 0 ? 0 : (max(y - steps, 0L) + l - 1) / l
9);

10 return 2 * jumps + steps;
11 }
12

13 int solve_rect (int k, int l, int x, int y) {
14 x = abs(x);

16/20

Round 2P, 2023
Task megajump

15 y = abs(y);
16 int min_steps = max(
17 k == 0 ? x : min(x % k, k - x % k),
18 l == 0 ? y : min(y % l, l - y % l)
19);
20 return min(
21 solve_jumps(k, l, x, y, min_steps),
22 solve_jumps(k, l, x, y, min_steps + 1)
23);
24 }
25

26 int solve (int k, int l, int x, int y) {
27 return min(
28 solve_rect(k * 2, l * 2, x, y),
29 1 + solve_rect(k * 2, l * 2, x - k, y - l)
30);
31 }
32

33 int main () {
34 int k, l, q;
35 cin >> k >> l >> q;
36

37 for (int qi = 0; qi < q; qi++) {
38 int x, y;
39 cin >> x >> y;
40 int d = solve(k, l, x, y);
41 cout << d << "\n";
42 }
43 }

This solution runs in 𝑂(1) time.

A note on contest strategy: Many participants made lots of attempts for the full solution, but
did not succeed in the end. In this situation, rather than blindly trying various changes, you
should stop and try to solve the easier subtask 3 first, so that you have at least partial points.
Another advantage is that you can then compare the output between your working sub3 solution
and your broken full solution on your own samples, which can help in understanding why it is
broken.

17/20

Round 2P, 2023
Task frenemies

Frenemies
Task Idea Benjamin Faltin
Task Preparation Benjamin Faltin
Description English Benjamin Faltin
Description German Charlotte Knierim
Description French Benjamin Faltin
Solution Benjamin Faltin

Subtask 1:
A key observation in this subtask is that if two mice dislike each other they will not have any other
enemies or friends. If it was the case one mouse would have multiple enemies contradicting the
constraints. Thus, we need to keep track of who has friends, who has enemies and with whom.
To calculate the size of the biggest friend group possible we just need to know the number 𝑋 of
pairs of enemies. The answer will then be 𝑁 − 𝑋 as we can have a group with everyone but one
from each of those pairs. This can be implemented as shown below.

1 #include <bits/stdc++.h> //score: 30
2 using namespace std;
3

4 int main() {
5 cin.tie(0); ios_base::sync_with_stdio(NULL);
6 int n,q; cin >> n >> q;
7 set<int> has_friends,has_enemies;
8 set<pair<int,int>> enemies;
9 while (q--) {

10 int s,a,b; cin >> s >> a >> b;
11 if (a<b) swap(a,b);
12 if (s) {
13 if (enemies.count({a,b})) cout << "YES\n";
14 else if (has_enemies.count(a) || has_enemies.count(b) ||
15 has_friends.count(a) || has_friends.count(b)) cout << "NO\n";
16 else {
17 cout << "YES\n";
18 enemies.insert({a,b});
19 has_enemies.insert(a);
20 has_enemies.insert(b);
21 }
22 } else {
23 if (has_enemies.count(a) || has_enemies.count(b)) cout << "NO\n";
24 else {
25 cout << "YES\n";
26 has_friends.insert(a);
27 has_friends.insert(b);
28 }
29 }
30 }
31 cout << n-enemies.size();
32 }

Subtask 2: 𝑁 ≤ 1000 and 𝑄 ≤ 2000
To process the 𝑄 queries we can build a graph the following way and check for bipartiteness. If
two mice dislike each other, add an edge between them. If they do like each other, we add an
edge between the first mouse and a virtual node as well as another edge between this virtual
node and the second mouse.
The size of the biggest friend group is equal to the sum of every component’s maximum colour

18/20

Round 2P, 2023
Task frenemies

(not counting virtual nodes).

1 #include <bits/stdc++.h> //score: 60
2 using namespace std;
3 vector<vector<int>> adj;
4 int n, on;
5

6 bool bipartite(int& tot) {
7 vector<int> side(n,-1);
8 bool is_bipartite = true;
9 queue<int> q;

10 for (int i=0;i<n;i++) {
11 if (side[i] == -1) {
12 vector<int> cur = {i};
13 q.push(i);
14 side[i] = 0;
15 while (!q.empty()) {
16 int v = q.front(); q.pop();
17 for (int u : adj[v]) {
18 if (side[u] == -1) {
19 side[u] = side[v] ^ 1;
20 q.push(u);
21 cur.push_back(u);
22 } else is_bipartite &= side[u] != side[v];
23 }
24 }
25 int c1=0,c2=0;
26 for (auto u: cur) {
27 if (u >= on) continue;
28 if (side[u]) c1++;
29 else c2++;
30 }
31 tot += max(c1,c2);
32 }
33 }
34 return is_bipartite;
35 }
36

37 int main() {
38 cin.tie(0); ios_base::sync_with_stdio(NULL);
39 int q,tmp=0; cin >> n >> q;
40 on = n; adj.resize(n);
41 while (q--) {
42 int e,i,j; cin >> e >> i >> j;
43 if (e) {
44 adj[i].push_back(j);
45 adj[j].push_back(i);
46 } else {
47 adj.push_back({i,j});
48 adj[i].push_back(n);
49 adj[j].push_back(n);
50 n++;
51 }
52 if (bipartite(tmp)) {
53 cout << "YES\n";
54 } else {
55 cout << "NO\n";
56 adj[i].pop_back();
57 adj[j].pop_back();
58 if (!e) {
59 adj.pop_back();
60 n--;
61 }
62 }
63 }
64 int cnt=0; bipartite(cnt);
65 cout << cnt << "\n";
66 }

19/20

Round 2P, 2023
Task frenemies

Subtask 3: 𝑁 ≤ 105 and 𝑄 ≤ 3.5 · 105

The question now becomes how to efficiently check for online bipartiteness. To do this, we will use
a union-find data structure with 2𝑁 nodes. For every mouse 𝑖 (0 ≤ 𝑖 ≤ 𝑁 − 1), node 𝑖 represents
the colour of mouse 𝑖 and node 𝑖 + 𝑁 its opposite colour. Now if mouse 𝑖 and mouse 𝑗 dislike
each other, we merge the nodes 𝑖 with 𝑗 + 𝑁 and 𝑖 + 𝑁 with 𝑗. If they like each other, we merge 𝑖
with 𝑗 and 𝑗 + 𝑁 with 𝑖 + 𝑁 . If the merging connects 𝑖 and 𝑖 + 𝑁 we know it will make the graph
non-bipartite. Finally, we can find the size of the biggest friend group in the same way as subtask 2.

1 #include <bits/stdc++.h> //score: 100
2 using namespace std;
3 vector<int> p,cnt;
4

5 int find_set(int v) {
6 if (v == p[v]) return v;
7 return p[v] = find_set(p[v]);
8 }
9

10 void union_sets(int a, int b) {
11 a = find_set(a);
12 b = find_set(b);
13 p[b] = a;
14 if (a != b) cnt[a] += cnt[b];
15 }
16

17 int main() {
18 cin.tie(0); ios_base::sync_with_stdio(NULL);
19 int n,q; cin >> n >> q;
20 p.resize(2*n); cnt.resize(2*n);
21 for (int i=0;i<n;i++) {
22 p[i] = i; p[i+n] = i+n;
23 cnt[i] = 1;
24 }
25

26 while (q--) {
27 int e,i,j; cin >> e >> i >> j;
28 if (e) {
29 if (find_set(i) == find_set(j)) cout << "NO\n";
30 else {
31 cout << "YES\n";
32 union_sets(i,j+n);
33 union_sets(i+n,j);
34 }
35 } else {
36 if (find_set(i) == find_set(j+n)) cout << "NO\n";
37 else {
38 cout << "YES\n";
39 union_sets(i,j);
40 union_sets(i+n,j+n);
41 }
42 }
43 }
44 int mx = 0;
45 for (int i=0;i<n;i++) {
46 if (find_set(i) == i) mx += max(cnt[i],cnt[i+n]);
47 }
48 cout << mx << "\n";
49 }

20/20

	Waterflow
	c0
	m 1000 and t104
	t106
	no further restrictions

	Embroideries
	1 n 16
	1 n 36
	1 n 200
	1 n 3'000

	Mega jump
	Only walking
	Jumping horizontally
	Small distance
	General solution

	Frenemies
	N 1000 and Q2000
	N 105 and Q3.5 105

