
SOI 2P 2024

Solution Booklet

Swiss Olympiad in Informatics

9–10 March 2024

Round 2P, 2024
Task hiddenkeys

Hidden Keys
Task Idea Anna Khanova
Task Preparation Anna Khanova
Description English Anna Khanova
Description German Bibin Muttappillil
Description French Benjamin Faltin
Solution Anna Khanova

We are given a grid of 𝑛 × 𝑚 numbers where the number in line 𝑖 and column 𝑗 is denoted by
𝑐𝑖 , 𝑗

Our task is to find 𝑖 , 𝑗 , 𝑘, 𝑙 such that 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑙 and 𝑐𝑖 , 𝑗 ≠ 𝑐𝑘,𝑙

Subtask 1: n · m ≤ 100
In this case we can, for each 𝑐𝑖 , 𝑗 , check all possible 𝑘, 𝑙 to try and find 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑙 and 𝑐𝑖 , 𝑗 ≠ 𝑐𝑘,𝑙 .
If such 𝑘, 𝑙 is found for any 𝑖 , 𝑗 we are done and we can output 𝑖 , 𝑗 , 𝑘, 𝑙 otherwise no 𝑖 , 𝑗 , 𝑘, 𝑙 meet
the criteria and we should output −1. We would have a time complexity of 𝒪(𝑛2𝑚2) which is
sufficient.
1 #include <algorithm> // score: 32
2 #include <vector>
3 #include <iostream>
4 using namespace std;
5

6 const int MAXN = 100100;
7

8 int n, m;
9 vector<int> a[MAXN];

10

11 void print_ans(int x1, int y1, int x2, int y2)
12 {
13 cout << x1 << ' ' << y1 << ' ' << x2 << ' ' << y2 << endl;
14 exit(0);
15 }
16

17 void try_at(int x, int y)
18 {
19 for (int i = 0; i < n; ++i)
20 for (int j = 0; j < m; ++j)
21 if (i != x && j != y && a[i][j] != a[x][y])
22 print_ans(x, y, i, j);
23 }
24

25 int main()
26 {
27 cin >> n >> m;
28 for (int i = 0; i < n; ++i)
29 {
30 a[i] = vector<int>(m);
31 for (int j = 0; j < m; ++j)
32 cin >> a[i][j];
33 }
34 for (int i = 0; i < n; ++i)
35 for (int j = 0; j < m; ++j)
36 try_at(i, j);
37 cout << -1 << endl;
38 return 0;
39 }

2/21

Round 2P, 2024
Task hiddenkeys

Subtask 2: n,m ≤ 100
Here, 𝒪(𝑛2𝑚2) is too slow however, we can realize that if 𝑐𝑖 , 𝑗 and 𝑐𝑘,𝑙 is a solution, then we know
that one of the 8 following cases is also a valid solution:

𝑐𝑖 ,0 and 𝑐𝑘,𝑙 , 𝑐0, 𝑗 and 𝑐𝑘,𝑙 , 𝑐𝑖 , 𝑗 and 𝑐𝑘,0, 𝑐𝑖 , 𝑗 and 𝑐0,𝑙 , 𝑐𝑖 ,0 and 𝑐0, 𝑗 , 𝑐𝑖 ,0 and 𝑐0,𝑙 , 𝑐𝑘,0 and 𝑐0, 𝑗 , 𝑐𝑘,0 and
𝑐0,𝑙

This is because if 𝑐𝑖 , 𝑗 = 𝑐𝑖 ,0 then 𝑐𝑘,𝑙 and 𝑐𝑖 ,0 is a solution. The same logic applies to 𝑐0, 𝑗 , 𝑐𝑘,0 , 𝑐0,𝑙 .
If none of these equalities hold, then either all 𝑐𝑖 ,0 , 𝑐0, 𝑗 , 𝑐𝑘,0 , 𝑐0,𝑙 are the same and at least one of
the 8 inequalities hold since 𝑐𝑖 , 𝑗 ≠ 𝑐𝑘,𝑙 or there is a difference between a number on the line 0 and
another on the column 0.

Therefore we only need to check if there is a 𝑐𝑖 , 𝑗 which doesn’t match with a number on the line 0
or the column 0. We have a complexity of 𝒪((𝑛 + 𝑚)𝑛𝑚)
1 #include <algorithm> // score: 51
2 #include <vector>
3 #include <iostream>
4 using namespace std;
5

6 const int MAXN = 100100;
7

8 int n, m;
9 vector<int> a[MAXN];

10

11 void print_ans(int x1, int y1, int x2, int y2)
12 {
13 cout << x1 << ' ' << y1 << ' ' << x2 << ' ' << y2 << endl;
14 exit(0);
15 }
16

17 void try_at(int x, int y)
18 {
19 for (int i = 0; i < n; ++i)
20 for (int j = 0; j < m; ++j)
21 if (i != x && j != y && a[i][j] != a[x][y])
22 print_ans(x, y, i, j);
23 }
24

25 int main()
26 {
27 cin >> n >> m;
28 for (int i = 0; i < n; ++i)
29 {
30 a[i] = vector<int>(m);
31 for (int j = 0; j < m; ++j)
32 cin >> a[i][j];
33 }
34 try_at(0, 0);
35 for (int i = 1; i < n; ++i)
36 try_at(i, 0);
37 for (int j = 1; j < m; ++j)
38 try_at(0, j);
39 cout << -1 << endl;
40 return 0;
41 }

Subtask 3: n · m ≤ 100 000
If there is a mismatch between 𝑐𝑖 , 𝑗 and 𝑐𝑘,𝑙 and 𝑖 , 𝑗 , 𝑘, 𝑙 > 0, then at least one of them is different
than 𝑐0,0 If there is a mismatch between 𝑐𝑖 , 𝑗 and 𝑐𝑘,𝑙 and 𝑖 , 𝑗 , 𝑘 or 𝑙 is 0, then either one of them is
different than 𝑐0,0, 𝑐1,0 or 𝑐0,1 and the coordinates don’t have any common part, or, if they are
equal, we have 𝑐0,0 ≠ 𝑐0,1, 𝑐0,0 ≠ 𝑐1,0 or 𝑐0,1 ≠ 𝑐1,0 which has the consequence of having at least
one difference either between 𝑐0,1 and 𝑐1,0 or between one of the three points and one other point

3/21

Round 2P, 2024
Task hiddenkeys

somewhere in the grid.

To solve the problem we only need to check all 𝑐𝑖 , 𝑗 against 𝑐0,0, 𝑐0,1 and 𝑐1,0
1 #include <algorithm> // score: 100
2 #include <iostream>
3 #include <vector>
4 using namespace std;
5

6 const int MAXN = 500500;
7

8 int n, m;
9 vector<int> a[MAXN];

10

11 void print_ans(int x1, int y1, int x2, int y2)
12 {
13 cout << x1 << ' ' << y1 << ' ' << x2 << ' ' << y2 << endl;
14 exit(0);
15 }
16

17 void try_at(int x, int y)
18 {
19 for (int i = 0; i < n; ++i)
20 for (int j = 0; j < m; ++j)
21 if (i != x && j != y && a[i][j] != a[x][y])
22 print_ans(x, y, i, j);
23 }
24

25 int main()
26 {
27 cin >> n >> m;
28 for (int i = 0; i < n; ++i)
29 {
30 a[i] = vector<int>(m);
31 for (int j = 0; j < m; ++j)
32 cin >> a[i][j];
33 }
34 try_at(0, 0);
35 if (m != 1)
36 try_at(0, 1);
37 if (n != 1)
38 try_at(1, 0);
39 cout << -1 << endl;
40 return 0;
41 }

4/21

Round 2P, 2024
Task movingfaster

Moving Faster
Task Idea Luca Versari
Task Preparation Théo von Düring
Description English Théo von Düring
Description German Bibin Muttappillil
Description French Théo von Düring
Solution Théo von Düring

We are given a value 𝑘, a weighted connected graph where each edge has a weight 𝑡 and a
decreasing value 𝑑, and two nodes 𝑠 and 𝑒. We want to compute the minimum time needed to
go back and forth between 𝑠 and 𝑒 a total of 𝑘 times.

One first observation is that the direction of the path doesn’t matter, going from 𝑠 to 𝑒 or from
𝑒 to 𝑠 on the same set of edges decreases each edge by the same amount and the sum of all
edge distances is also the same. Therefore the problem is the same as going 𝑘 times from 𝑠
to 𝑒 and decreasing the edge weights each time. We will use this simplified problem in the
solutions.

Subtask 1: A tree
If the graph is a tree we know that the path between 𝑠 and 𝑒 is unique and therefore it will always
be used to travel between the two nodes. To solve this task we can just run a DFS between the two
nodes and save the path taken. Then compute the time needed to use 𝑘 times each edge.
1 #include <bits/stdc++.h> // score: 17
2

3 using namespace std;
4

5 #define int int64_t
6

7 vector<vector<array<int,2>>> g;
8 stack<array<int,2>> st;
9

10 bool dfs(int u, int target, int i, int p) {
11 st.push({u,i});
12

13 if (u == target)
14 return true;
15

16 for (auto [v,j] : g[u]) {
17 if (v == p)
18 continue;
19 if (dfs(v, target, j, u))
20 return true;
21 }
22 st.pop();
23 return false;
24 }
25

26 signed main() {
27 ios_base::sync_with_stdio(0);
28 cin.tie(0);
29

30 int n,m,k,s,e;
31 cin >> n >> m >> k >> s >> e;
32

33 g.assign(n, {});
34 vector<array<int,2>> edge(m);
35

5/21

Round 2P, 2024
Task movingfaster

36 for (int i = 0; i < m; i++) {
37 int a,b,t,d;
38

39 cin >> a >> b >> t >> d;
40 edge[i] = {t,d};
41 g[a].push_back({b,i});
42 g[b].push_back({a,i});
43 }
44

45 dfs(s, e, -1, s);
46

47 int ans = 0;
48 while (!st.empty()) {
49 auto [u, i] = st.top();
50 auto [t, d] = edge[i];
51 st.pop();
52 if (i == -1)
53 continue;
54 ans += k*t - d*(k*(k-1)/2);
55 }
56 cout << ans;
57 }

Subtask 2: k = 1
Since 𝑘 = 1, we only need to travel once from 𝑠 to 𝑒 and since we never traverse an edge twice, 𝑑
doesn’t have any effect. Thus, to solve this case you need to go from 𝑠 to 𝑒 using the shortest
path without taking into account 𝑑. This problem can be solved using a standard dĳkstra
implementation on the weighted graph
1 #include <bits/stdc++.h> // score: 15
2

3 using namespace std;
4

5 #define int int64_t
6

7 signed main() {
8 ios_base::sync_with_stdio(0);
9 cin.tie(0);

10

11 int n,m,k,s,e;
12 cin >> n >> m >> k >> s >> e;
13

14 vector<vector<array<int,2>>> g(n);
15 for (int i = 0; i < m; i++) {
16 int a,b,t,d;
17 cin >> a >> b >> t >> d;
18

19 g[a].push_back({b, t});
20 g[b].push_back({a, t});
21 }
22

23 priority_queue<array<int,2>> pq;
24 pq.push({0, s});
25 vector<int> dist(n, -1);
26 while (!pq.empty()) {
27 auto [d, a] = pq.top();
28 pq.pop();
29

30 if (dist[a] != -1)
31 continue;
32 dist[a] = -d;
33

34 for (auto [b, t] : g[a]) {
35 if (dist[b] != -1)
36 continue;

6/21

Round 2P, 2024
Task movingfaster

37 pq.push({d-t, b});
38 }
39 }
40 cout << dist[e] << "\n";
41 }

General problem
For the general case it can also be shown that using the same path 𝑘 times is optimal. The idea of
the proof is that if you suppose that the optimal solution uses 𝑛 > 1 paths which we will call
𝑝1 , 𝑝2 , . . . , 𝑝𝑛 each used 𝑐1 , 𝑐2 , . . . , 𝑐𝑛 times respectively, then there exist 𝑖 , 𝑗, such that using 𝑝𝑖
𝑐𝑖 − 1 times and 𝑝 𝑗 𝑐 𝑗 + 1 times is faster which contradicts the hypothesis and shows that we only
use one path. To solve the problem we will, for each edge, compute the time it will take to use it
𝑘 times and use dĳkstra on the graph with these new precomputed times as weights. This gives
us the shortest weighted path and the time needed to use it 𝑘 times
1 #include <bits/stdc++.h> // score: 100
2

3

4 using namespace std;
5

6 #define int int64_t
7

8 signed main() {
9 ios_base::sync_with_stdio(0);

10 cin.tie(0);
11

12 int n,m,k,s,e;
13 cin >> n >> m >> k >> s >> e;
14

15 vector<vector<array<int,2>>> g(n);
16

17 for (int i = 0; i < m; i++) {
18 int a,b,t,d;
19

20 cin >> a >> b >> t >> d;
21

22 assert(t > 0);
23 assert(d > 0);
24 assert(t*k > 0);
25 assert(d*(k*(k-1)/2) >= 0);
26 assert(t - d*k > 0);
27

28 t = t*k - d*(k*(k-1)/2);
29 assert(t > 0);
30

31 g[a].push_back({b,t});
32 g[b].push_back({a,t});
33 }
34

35 vector<int> dist(n, -1);
36

37 priority_queue<array<int,2>> pq;
38 pq.push({0, s});
39 while(!pq.empty()) {
40 auto [d1, u] = pq.top();
41 pq.pop();
42

43 if (dist[u] != -1)
44 continue;
45

46 dist[u] = -d1;
47 assert(dist[u] >= 0);
48

49 for (auto [v,d2] : g[u]) {

7/21

Round 2P, 2024
Task movingfaster

50 if (dist[v] != -1)
51 continue;
52 pq.push({d1-d2, v});
53 }
54 }
55

56 assert(dist[e] > 0);
57

58 cout << dist[e] << "\n";
59 }

8/21

Round 2P, 2024
Task ruinedchocolates

Ruined Chocolates
Task Idea Andrei Feodorov, Johannes Kapfhammer
Task Preparation Andrei Feodorov
Description English Andrei Feodorov
Description German Charlotte Knierim
Description French Théo von Düring
Solution Johannes Kapfhammer

Subtask 1: Observation: All queries go through the root
Root the tree in the vertex that has the maximal value. Then: if a query does not go through
the root, the answer is just the value of the root. Else we just have to consider answering the
question for two subtrees where the query starts at the root of the subtree. The final answer is
the maximum answer of the two subqueries inside the two subtrees, and of the maximum value
in all other subtrees.

Subtask 2: Observation: Two paths and an extra vertex
Let’s consider the vertices with the 𝑘 largest values. Choose the smallest 𝑘 such that there is no
path that contains them all.

Since the largest value is the root, we can describe this set by giving the two endpoints of the
path containing the first 𝑘 − 1 elements, call them 𝑎 and 𝑏, and the extra vertex 𝑐.

Note that:

• 𝑎 and 𝑏 lie in different subtrees because the root must be part of the path (recall we are
considering the largest 𝑘 values). There is one exception if the root only has a single child.

• 𝑐 can be in the same subtree as 𝑎 or 𝑏 or in a different one.

• Any possible query can never cover all vertices path(a, b) ∪{𝑐} – because queries are paths
and by definition there is no path through those vertices.

9/21

Round 2P, 2024
Task ruinedchocolates

• Therefore, the answer to any query is at least value(𝑐).
• As a corollary, the values of vertices outside of path(a, b) ∪{𝑐} don’t matter.

So to answer a query (𝑣, 𝑤), we only have check:

• If 𝑣 and 𝑎 are in the same subtree, let 𝑞 = 𝐿𝐶𝐴(𝑎, 𝑣) be the vertex where they come together.
The answer of the query is the maximum of all values on path(𝑎, 𝑞) \ {𝑞}. Similarly with 𝑣
and 𝑏, 𝑤 and 𝑎, and 𝑤 and 𝑏.

• If vertex 𝑐 does not lie on the path 𝑣 → 𝑤, then also consider the value of 𝑐 a possible
answer.

• By the observations above, this is enough – we will have considered at least one value
because the set path(a, b) ∪{𝑐} is a strict superset of the query. And all other values are
smaller.

Subtask 3: Implementation
We need to do the following precomputation which can be implemented in 𝒪(𝑛):

1. Root the tree at the vertex with the maximum value.

2. Iterate over the vertices in decreasing value, and find the two endpoints of the path 𝑎 and 𝑏,
and our extra vertex 𝑐.

3. For every other vertex, precompute the nearest ancestor that lies on the path 𝑎 → 𝑏. For
each vertex on the path compute the maximum of all vertices strictly below.

And then for each query (𝑣, 𝑤) we can answer in 𝒪(1):
• Find the two points 𝑝 = 𝐿𝐶𝐴(𝑎, 𝑣) (or 𝑤) and 𝑞 = 𝐿𝐶𝐴(𝑏, 𝑤) (or 𝑣) where we meet up with

the path. Then the maximum value below 𝑝 and 𝑞 are possible answers. All of this is
already precomputed.

• Check whether 𝑐 lies on the path 𝑣 → 𝑤. If not, then the value of 𝑐 is also a possible answer.
1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int main() {
5 cin.tie(nullptr)->sync_with_stdio(false);
6

7 int n, q; cin >> n >> q;
8 vector<vector<int>> g(n);
9 for (int i=1; i<n; ++i) {

10 int a, b; cin >> a >> b;
11 g[a].push_back(b);
12 g[b].push_back(a);
13 }

10/21

Round 2P, 2024
Task ruinedchocolates

14 vector<int> value; copy_n(istream_iterator<int>(cin), n, back_inserter(value));
15 vector<int> order(n); iota(order.begin(), order.end(), 0);
16 sort(order.begin(), order.end(), [&](int a, int b) { return value[a]>value[b]; });
17 int root = order[0];
18

19 vector<int> pre(n), post(n);
20 vector<int> subtreerootof(n), parent(n);
21 {
22 int time = 0;
23 auto dfs = [&](auto&& self, int v, int p, int subroot) -> void {
24 pre[v] = time++;
25 subtreerootof[v] = subroot;
26 parent[v] = p;
27 for (auto w : g[v])
28 if (w != p)
29 self(self, w, v, subroot);
30 post[v] = time;
31 };
32 for (auto w : g[root])
33 dfs(dfs, w, root, w);
34 }
35 auto is_ancestor_of = [&](int a, int b) { return pre[a] <= pre[b] && post[b] <= post[a]; };
36 array<int, 2> subtree_root{-1, -1};
37 array<int, 2> subtree_pathend{};
38 array<int, 2> subtree_maxvalue{};
39 int extra_vertex = -1;
40

41 for (auto v : order) {
42 if (v == root) continue;
43 int i=0;
44 for (; i<2; ++i) {
45 if (subtree_root[i] == -1) {
46 subtree_root[i] = subtreerootof[v];
47 subtree_pathend[i] = v;
48 subtree_maxvalue[i] = value[v];
49 break;
50 } else if (subtree_root[i] == subtreerootof[v]) {
51 if (is_ancestor_of(subtree_pathend[i], v))
52 subtree_pathend[i] = v;
53 else if (!is_ancestor_of(v, subtree_pathend[i]))
54 extra_vertex = v;
55 break;
56 }
57 }
58 if (i == 2 && extra_vertex == -1)
59 extra_vertex = v;
60 if (extra_vertex != -1)
61 break;
62 }
63 vector<int> subtree_answer(n, -1);
64 for (int i=0; i<2 && subtree_root[i] != -1; ++i) {
65 int pos = subtree_pathend[i];
66 int submax = 0;
67 auto fill = [&](auto&& self, int v, int p) -> void {
68 subtree_answer[v] = submax;
69 for (int w : g[v])
70 if (w != p && subtree_answer[w] == -1)
71 self(self, w, v);
72 };
73 while (pos != root) {
74 fill(fill, pos, parent[pos]);
75 submax = max(submax, value[pos]);
76 pos = parent[pos];
77 }
78 }
79

80 auto subtree_index = [&](int v) {
81 if (v == root) return -1;

11/21

Round 2P, 2024
Task ruinedchocolates

82 int subroot = subtreerootof[v];
83 auto it = find(subtree_root.begin(), subtree_root.end(), subroot);
84 return it == subtree_root.end() ? -1 : static_cast<int>(it - subtree_root.begin());
85 };
86 while (q--) {
87 int a, b; cin >> a >> b;
88 int i = subtree_index(a), j = subtree_index(b);
89 int ans = 0;
90 if (i != -1 && j != -1 && i == j) {
91 ans = value[root];
92 } else {
93 for (int k=0; k<2; ++k) {
94 if (k == i) ans = max(ans, subtree_answer[a]);
95 else if (k == j) ans = max(ans, subtree_answer[b]);
96 else ans = max(ans, subtree_maxvalue[k]);
97 }
98 if (extra_vertex != -1 &&
99 !is_ancestor_of(extra_vertex, a) &&

100 !is_ancestor_of(extra_vertex, b))
101 ans = max(ans, value[extra_vertex]);
102 }
103 cout << ans << '\n';
104 }
105 }

12/21

Round 2P, 2024
Task tramtickets

Tram Tickets
Task Idea Bibin Muttappillil
Task Preparation Charlotte Knierim
Description English Charlotte Knierim
Description German Charlotte Knierim
Description French Benjamin Faltin
Solution Johannes Kapfhammer

Step 1: Without Binna (51 Points)
We sort by 𝑡𝑖 then we do the following DP approach:

DP[𝑖] = cheapest assignment for𝑡0 , . . . , 𝑡𝑖−1

= min(buy single ticket at 𝑡𝑖 , buy multiride ticket at time 𝑡𝑖 − 𝑑)
= min(DP[𝑖 − 1] + 𝑎, DP[lower_bound(𝑡𝑖 − 𝑑)] + 𝑏)

where lower_bound(𝑡𝑖 − 𝑑) is the largest index 𝑗 such that 𝑡 𝑗 < 𝑡𝑖 − 𝑑. This index can be found
via binary search for a 𝒪(𝑛 log 𝑛) solution, or via two pointer which runs in 𝒪(𝑛).
1 #include <bits/stdc++.h>
2 using namespace std;
3 #define int int64_t
4

5 signed main(){
6 int n, _, singleticket, multiride, d;
7 cin >> n >> _ >> singleticket >> multiride >> d;
8

9 vector<int> time; copy_n(istream_iterator<int>(cin), n, back_inserter(time));
10 sort(time.begin(), time.end());
11

12 vector<int> dp(n+1, 0);
13 for (int i=0, j=0; i < n; ++i) {
14 while(j+1 < n && time[j] <= time[i] - d)
15 ++j;
16 dp[i+1] = min(dp[i] + singleticket,
17 dp[j] + multiride);
18 }
19 cout << dp[n] << '\n';
20 }

Step 2: With Binna (75 Points)

DP[𝑖][𝑗] =cheapest assignment for 𝑡0 , . . . , 𝑡𝑖−1

with Binna having multiride ticket remaining for 𝑗 more time units

Let 𝑡0 , . . . , 𝑡𝑛−1 be the unique times in which we have tickets. Define asum(𝑙 , 𝑟) as the number of
distinct times 𝑡𝑖 with 𝑙 ≤ 𝑡𝑖 < 𝑟 multiplied by 𝑎 (the cost for single tickets).

We call tickets which are "doubled" if there exactly two tickets at the same time. Let’s define
bsum(𝑙 , 𝑟) as number of distinct times 𝑡𝑖 with 𝑙 ≤ 𝑡𝑖 < 𝑟 where we have doubled tickets, again
multiplied by 𝑎 (so this will be the cost for doubled single tickets). Let’s define bsum to be 0 if
𝑟 ≤ 𝑙. With prefix sums precomputation this can be evaluated in constant time.

13/21

Round 2P, 2024
Task tramtickets

DP[𝑖][𝑗] = min



min0≤𝑘≤𝑑 (DP[𝑖 − 𝑑][𝑘] + bsum(𝑖 − 𝑑 + 𝑘, 𝑖) + 𝑏) Stofl: buy M at 𝑖 − 𝑏, Binna: only S
min0≤𝑘≤𝑑 (DP[𝑖 − 𝑑][𝑘] + bsum(𝑖 − 𝑑 + 𝑘, 𝑖 − 𝑑 + 𝑗) + 2 · 𝑏) Stofl: M at 𝑖 − 𝑏, Binna: M at 𝑖 − (𝑑 − 𝑗)
DP[𝑖 − 1][𝑗 + 1] + bsum(𝑖 − 1, 𝑖) if 𝑗 + 1 ≤ 𝑑 Use Binna’s M, Stofl buys doubled S
DP[𝑖 − 1][0] + asum(𝑖 − 1, 𝑖) + bsum(𝑖 − 1, 𝑖) if 𝑗 = 0 Both buy S
DP[𝑖][0] + 𝑏 if 𝑗 = 𝑑 Binna: buy M at 𝑖

gives a DP that runs in 𝒪(𝑛 · 𝑑2).
This can be improved by noticing that the first case does not depend on 𝑗 so it can be cached, and
the last three cases can be computed in constant time. So we only need to speed up the second
case:

𝐴[𝑗][𝑘] = DP[𝑖 − 𝑑][𝑘] + bsum(𝑖 − 𝑑 + 𝑘, 𝑖 − 𝑗) + 2 · 𝑏
= DP[𝑖 − 𝑑][𝑘] + 2 · 𝑏︸ ︷︷ ︸

independent of 𝑗

+ bsum(𝑖 − 𝑑 + 𝑘, 𝑖 − 𝑗)︸ ︷︷ ︸
only a prefix changes

What happens when we go from 𝐴[𝑗 + 1] to 𝐴[𝑗]?

𝐴[𝑗][𝑘] = 𝐴[𝑗 + 1][𝑘] +
{

bsum(𝑖 − 𝑗 − 1, 𝑖 − 𝑗) if 𝑖 − 𝑗 − 1 > 𝑖 − 𝑑 + 𝑘

0 otherwise

This means we can store array 𝐴[𝑗] as segment tree, which supports the two operations we need:
increment a prefix, get the global minimum.

This runs in 𝒪(𝑛 · 𝑑 log 𝑑) if we only look at times 𝑖 where there is a ticket. Instead of segment
trees we can also use sets: We have 𝐴[𝑗][𝑘] ≤ 𝐴[𝑗][𝑘 + 1] (having Binna’s ticket last longer is
always more expensive) so the array 𝐴[𝑘] is non-decreasing. Let’s just keep the differences in a
map with entries (k,A[j][k]-A[j][k-1]). When we increment a prefix we increment the delta of the
first entry and decrement the delta of some entry in the middle. Let’s say the new element is
(𝑘𝑖 , 𝑑𝑖) and the entry before is (𝑘𝑖−1 , 𝑑𝑖−1). Then we replace merge both entries into a new one
(𝑘𝑖 , 𝑑𝑖 + 𝑑𝑖−1) or remove it if 𝑑𝑖 + 𝑑𝑖−1 = 0. This gets rid of the irrelevant entries and we only keep
the prefix minima. The minimum is always at the beginning of the set.

And instead of segtree/sets we can also just use vectors: since the prefixes are always getting
smaller, and the array is non-decreasing initially, we pop all values that are no longer getting
changed from the end of the vector and keep one minimum of the values that have been removed.
We also store a global offset that we want to add to all elements of the vector. Then incrementing
a prefix just means popping the last value of the vector, add offset to it and update the global
minimum. Then increment the offset. The overall minimum is the minimum between the first
entry of the vector and the popped minimum.

This runs in 𝒪(𝑛 · 𝑑).
1 #include<bits/stdc++.h>
2 using namespace std;
3

4 #define int int64_t
5

6 const int INF = 1e9;
7

8 void xmin(int& x, int v) {
9 if (v < x)

10 x = v;
11 }
12

14/21

Round 2P, 2024
Task tramtickets

13 signed main() {
14 cin.tie(nullptr)->sync_with_stdio(false);
15 cin.exceptions(ifstream::badbit | ifstream::failbit | ifstream::eofbit);
16

17 int num_stofl_tickets, num_binna_tickets, singleticket, multiride, d;
18 cin >> num_stofl_tickets >> num_binna_tickets >> singleticket >> multiride >> d;
19

20 vector<int> time;
21 vector<bool> both;
22 {
23 array<vector<int>, 2> xs;
24 xs[0].resize(num_stofl_tickets);
25 xs[1].resize(num_binna_tickets);
26 for (auto& v : xs) {
27 for (auto& x : v) cin >> x;
28 sort(v.begin(), v.end());
29 }
30 time.push_back(-d-2);
31 set_union(xs[0].begin(), xs[0].end(), xs[1].begin(), xs[1].end(), back_inserter(time));
32 vector<int> bs;
33 set_intersection(xs[0].begin(), xs[0].end(), xs[1].begin(), xs[1].end(), back_inserter(bs));
34 for (auto t : time)
35 both.push_back(binary_search(bs.begin(), bs.end(), t));
36 }
37 const int n = time.size();
38

39 vector<vector<int>> dp(n+1, vector<int>(d+1, INF));
40 dp[0][0] = 0;
41 vector<int> dp_i_d(d+1);
42 for (int i=1, i_d=0; i<n; ++i) {
43 int time_i_d = time[i] - d;
44 while (time[i_d+1] <= time_i_d)
45 ++i_d;
46 { // dp_i_d is the interpolated DP state at time_i_d.
47 int padding = time_i_d - time[i_d];
48 assert(padding >= 0);
49 if (padding == 0) {
50 dp_i_d = dp[i_d];
51 } else {
52 fill(dp_i_d.begin(), dp_i_d.end(), INF);
53 for (int k=d-padding; k>=0; --k)
54 dp_i_d[k] = min(dp_i_d[k+1], dp[i_d][k+padding]);
55 dp_i_d[0] = min(dp_i_d[0], dp[i_d][0]);
56 }
57 }
58

59 int inbetween = 0;
60 for (int i_k=i_d + (time[i_d] < time[i]-d); i_k <= i; ++i_k)
61 inbetween += both[i_k];
62

63 // buy Stofl a double ticket at time t
64 vector<int> aj(d+1, INF);
65 int aj_offset=0, aj_popmin=INF;
66 for (int k=0, i_k=i_d + (time[i_d] < time[i]-d); k<=d; ++k) {
67 assert(time[i_k] >= time[i] - d + k);
68

69 // cover [i-d,i] with a multiride but don't buy a second one
70 xmin(dp[i][0], dp_i_d[k] + singleticket*inbetween + multiride);
71

72 // prepare array a[j] for the next case:
73 // cover [i-d,i] with a multiride, buy new multiride at time i-d+j
74 xmin(aj[k], dp_i_d[k] + singleticket*inbetween + 2*multiride);
75

76 // Needed to make a[j] decreasing
77 if (k) xmin(aj[k], aj[k-1]);
78

79 if (i_k+1 < n && time[i_k] < time[i] && time[i_k] == time[i]-d+k)
80 inbetween -= both[i_k++];

15/21

Round 2P, 2024
Task tramtickets

81 }
82 for (int j=d, i_k=i; j>=0; --j) {
83 assert(time[i_k] <= time[i]-d+j);
84 if (time[i_k] == time[i]-d+j) {
85 if (both[i_k])
86 aj_offset -= singleticket;
87 --i_k;
88 }
89 assert((int)aj.size() == j+1);
90 xmin(aj_popmin, aj.back() + aj_offset);
91 aj.pop_back();
92 xmin(dp[i][j], min(aj_popmin, aj.empty() ? INF : aj.back()+aj_offset));
93 }
94

95 // use up existing multiride and buy singles
96 int td = time[i] - time[i-1];
97 for (int j=1; j + td <= d; ++j)
98 xmin(dp[i][j], dp[i-1][j + td] + (both[i] ? singleticket : 0));
99

100 // just buy singletickets
101 xmin(dp[i][0], dp[i-1][0] + (both[i] ? 2 : 1)*singleticket);
102

103 // buy a new multiride
104 xmin(dp[i][d], dp[i-1][0] + multiride + (both[i] ? singleticket : 0));
105

106 // make monotone (not needed)
107 for (int j=d-1; j>=0; --j)
108 xmin(dp[i][j], dp[i][j+1]);
109 }
110 cout << dp[n-1][0] << '\n';
111 }

Step 3: Happy subtask merging
Submit both solutions to step 1 and step 2 and subtask merging will do its job giving you
well-deserved 100 points.

16/21

Round 2P, 2024
Task baguette

Baguette Magique
Task Idea Anna Khanova, Johannes Kapfhammer
Task Preparation Anna Khanova
Description English Johannes Kapfhammer
Description German Bibin Muttappillil, Johannes Kapfhammer
Description French Benjamin Faltin
Solution Jan Schär

Subtask 1: Cut single centimeters
In this subtask, we can only cut out parts of length 1 cm from the baguette. We need to pick some
flavor which should remain at the end, and cut out all centimeters which have a different flavor.
We can just try this for all possible flavors and pick the best option.

1 #include<bits/stdc++.h> // score: 12
2 using namespace std;
3

4 signed main () {
5 int n, k;
6 string baguette;
7 cin >> n >> k >> baguette;
8

9 int best_cuts = n - 1;
10 for (char keep = 'a'; keep <= 'z'; keep++) {
11 int count = 0;
12 for (char c : baguette) if (c != keep) count++;
13 best_cuts = min(best_cuts, count);
14 }
15 cout << best_cuts << "\n";
16 }

This solution runs in 𝑂(𝑛) time (when treating the size of the alphabet as a constant).

Subtask 4: 10 meter baguette
The baguette can be at most 1’000 cm in length.

Once we have decided which flavor we want to keep, the problem becomes simpler: We need to
remove all the centimeters which are not this flavor.

There are still two tricky things: It can be that it is more efficient to remove a larger part which
also includes centimeters of the flavor we want to keep. For example, let’s say we have a baguette
which contains the pattern aba, and we can remove parts of length at most 3 cm, and want to end
up with only flavor b. Then it’s better to cut out the entire pattern at once, rather than cutting out
the two centimeters of flavor a individually.

But then we need to be careful that we don’t end up with an empty baguette.

One possible solution is to brute-force a centimeter of the baguette which we definitely keep.
Once we know which centimeter to keep, we can then scan the baguette left to right, and when
we see a centimeter of the wrong flavor, we remove a part of the baguette which is as long as
possible, stopping before the centimeter which we definitely keep.

It’s optimal to remove a part which is as long as possible, because we only need to optimize the
number of cuts, not their length, and this way we maximize the chance of removing as many
centimeters of the wrong flavor as possible.

17/21

Round 2P, 2024
Task baguette

1 #include<bits/stdc++.h> // score: 67
2 using namespace std;
3

4 signed main () {
5 int n, k;
6 string baguette;
7 cin >> n >> k >> baguette;
8

9 int best_cuts = n;
10 for (int keep = 0; keep < n; keep++) {
11 int cuts = 0;
12 int cut_until = 0;
13 for (int i = 0; i < n; i++) {
14 if (i == keep) {
15 cut_until = 0;
16 } else if (cut_until <= i && baguette[i] != baguette[keep]) {
17 cuts++;
18 cut_until = i + k;
19 }
20 }
21 best_cuts = min(best_cuts, cuts);
22 }
23 cout << best_cuts << "\n";
24 }

This solution runs in 𝑂(𝑛2) time, which is enough for this subtask.

Subtask 5: 100 km baguette
The baguette can be at most 107 cm in length. The previous solution is too slow for this.

We can improve it by making the observation that we can actually ignore the constraint that the
baguette must be non-empty. We can only violate this constraint if we remove the entire baguette.
In this case, we can just add back the last centimeter of the baguette, it doesn’t matter what flavor
it has.

The solution is to try out all flavors, and for each, scan the baguette from left to right and remove
a maximal part whenever we see a centimeter of the wrong flavor.
1 #include<bits/stdc++.h> // score: 100
2 using namespace std;
3

4 signed main () {
5 int n, k; cin >> n >> k;
6 string s; cin >> s;
7

8 int ans = n;
9

10 for (char keep = 'a'; keep <= 'z'; ++keep) {
11 int cuts = 0;
12 for (int i = 0; i < s.size();) {
13 if (s[i] != keep) {
14 i += k;
15 cuts += 1;
16 } else {
17 i += 1;
18 }
19 }
20 ans = min(ans, cuts);
21 }
22 cout << ans << "\n";
23 }

This solution runs in 𝑂(𝑛) time.

18/21

Round 2P, 2024
Task catering

Catering
Task Idea Johannes Kapfhammer
Task Preparation Amirkeivan Mohtashami
Description English Amirkeivan Mohtashami
Description German Bibin Muttappillil, Johannes Kapfhammer
Description French Benjamin Faltin
Solution Amirkeivan Mohtashami

We are given a weighted connected graph with 𝑛 nodes and 𝑚 edges representing a network
of roads and the price needed to cover each road with cheese. Our goal is to cover enough
roads with cheese such that between any two nodes there exists a path between them which is
completely covered in cheese. A sponsor also accepts to cover 𝑘 of the roads we chose for free.
We want to compute the minimum cost needed to cover the remaining roads we chose with
cheese.

Observation
The roads we want to cover with cheese must form a spanning tree. If the solution wasn’t a
tree then there would exist a cycle and the number of roads we must pay for ourselves could
be reduced by one by removing one edge in the cycle and the solution wouldn’t be optimal.
Additionally, it must be a spanning tree since all two nodes must be connected by a path.

Solution
Since the roads must form a tree with 𝑛 − 1 edges we must pay for 𝑚𝑎𝑥(0, 𝑛 − 𝑘 − 1) of these
edges. The claim is that these 𝑛 − 𝑘 − 1 edges are the 𝑛 − 𝑘 − 1 smallest edges contained in a
minimum spanning tree of the weighted graph. Let’s prove this. The lemma 1 isn’t needed to
prove that the algorithm is correct but is needed to prove that the 𝑛 − 𝑘 − 1 smallest edges of any
spanning trees form a solution.

Lemma 1.
All minimum spanning trees have edges of same weight, alternatively, the 𝑖-th smallest edge of
two different spanning trees are of same weight.

Proof. We will proceed by contradiction. Let’s suppose we have two minimum spanning trees
𝑇1 , 𝑇2 with different edge weights.
Then 𝑇1 and 𝑇2 must have a different number of edges with weight 𝑤 for some weight 𝑤 in the
possible edge weights. Lets call 𝑛𝑤,1 the number of edges of weight 𝑤 in 𝑇1 and 𝑛𝑤,2 the number
in 𝑇2.
Without loss of generality, lets suppose 𝑛𝑤,1 > 𝑛𝑤,2
Now, for each edge 𝑒𝑤 of weight 𝑤 in 𝑇1 we can add it to 𝑇2 and it will create a cycle containing
the edge 𝑒𝑤 provided 𝑒𝑤 isn’t already in 𝑇2.
Since 𝑇2 is a MST, all edges on that created cycle must have weight smaller or equal to 𝑤 otherwise
we could remove one of the longer edges and have a smaller MST than 𝑇2 which is absurd
Since 𝑇1 is a MST, there must be an other edge on the created cycle in 𝑇2 which doesn’t belong to
𝑇1 with weight 𝑤. If that wasn’t the case, we could remove 𝑒𝑤 from 𝑇1 and add one of the smaller
edge in that created cycle to connect the two newly disconnected subtrees in 𝑇1 which would
imply that we can have a smaller MST than 𝑇1 which is absurd.
We will now, for each edge 𝑒𝑤 not already in 𝑇2, remove one edge of weight 𝑤 not in 𝑇1 from 𝑇2
and add 𝑒𝑤 to 𝑇2.

19/21

Round 2P, 2024
Task catering

We conclude that we can remove all edges with weight 𝑤 from 𝑇2 and insert all the ones from
𝑇1 and know that 𝑇2 is still a MST after the changes. But then 𝑇2 has more edges than 𝑇1 since
𝑛𝑤,1 > 𝑛𝑤,2 hence it is no longer a MST which is absurd
Therefore, 𝑇1 and 𝑇2 must have edges with the same weights. □

Lemma 1. shows us that all MST have the same set of edge weights and so taking the 𝑛 − 𝑘 − 1
smallest edges isn’t impacted by the found MST. In this solution Kruskal’s algorithm was used to
compute the edges but because of Lemma 1., any other method to get a valid MST gives a correct
answer.
Let’s now show that the 𝑛− 𝑘−1 smallest edges of an MST are a set without cycles with minimum
weight sum.
(We will use the 𝑛 − 𝑘 − 1 first edges obtained using Kruskal’s algorithm.)

Proof. Let 𝑆1 be a set of 𝑛 − 𝑘 − 1 edges which is solution to the problem.
We will proceed using induction.

(I.H.) The set 𝑆2 of 𝑙 edges obtained using Kruskal on the first 𝑚 edges is optimal. i.e. the 𝑙 edges
in 𝑆2 are the 𝑙 first edges of some solution 𝑆1 and all edges between the 𝑙-th edge of 𝑆2 and
the 𝑚-th edge of the graph are not in 𝑆1.

(𝑚 = 0) The set containing edges present in the 0 first smallest edges of the graph is the empty set
which is contained in 𝑆1. Therefore the algorithm is correct for a 𝑚 = 0.

(𝑚 =⇒ 𝑚 + 1) Suppose the algorithm works for 𝑚 edges. Let’s show it works for 𝑚 + 1 edges.
If at any point the subset 𝑆2 of edges obtained with Kruskal applied on the 𝑚 first edges is
of size 𝑛 − 𝑘 + 1, we are done and the proof is finished.
Consider 𝑒𝑚+1 the 𝑚 + 1-th smallest edge of the graph, we have two cases

– if 𝑒𝑚+1 is in 𝑆1:
We are done and Kruskal is optimal on 𝑚 + 1 edges.

– if 𝑒𝑚+1 isn’t in 𝑆1:
If when we insert 𝑒𝑚+1 in 𝑆2 (optimal by (I.H)) it create a cycle, not adding it to 𝑆2 is
correct as adding it would not create a valid solution.

If it doesn’t create a cycle, then adding it to 𝑆1 must create a cycle with no edges greater
than 𝑒𝑚+1 as otherwise we could remove a longer edge 𝑓 from 𝑆1 and 𝑆1 ∪ {𝑒} \ { 𝑓 }
would be a better solution than 𝑆1 which is absurd.
Additionally there must exist an edge with weight greater or equal to 𝑒𝑚+1 on the cycle
since otherwise it would create a cycle in 𝑆2 which is not the case by hypothesis.

Therefore there exists an edge 𝑓 with weight equal to 𝑒𝑚+1 such that 𝑆′1 = 𝑆1 ∪ {𝑒𝑚+1} \
{ 𝑓 } is a valid solution. We can now replace 𝑆1 with 𝑆′1 while keeping all our induction
steps true since 𝑆′1 works like 𝑆1 for all previous induction steps.

Since Kruskal gives us a tree with size 𝑛 − 1 ≥ 𝑛 − 𝑘 − 1, the set 𝑆2 obtained is always a solution
by induction. □

Again, by Lemma 1., this shows us that any MST algorithm works since Kruskal’s algorithm
works for this problem.

1 #include <bits/stdc++.h> // score: 100
2

3 using namespace std;
4

5 #define int int64_t
6 #define all(x) x.begin(), x.end()
7 #define sz(x) (int)x.size()
8

9 vector<int> dsu;
10

20/21

Round 2P, 2024
Task catering

11 int find(int u) {
12 if (dsu[u] == u)
13 return u;
14 return dsu[u] = find(dsu[u]);
15 }
16

17 signed main() {
18 ios_base::sync_with_stdio(0);
19 cin.tie(0);
20

21 int n,m,k;
22 cin >> n >> m >> k;
23

24 dsu.resize(n);
25 for (int i = 0; i < n; i++)
26 dsu[i] = i;
27

28 vector<array<int,3>> e(m);
29 for (int i = 0; i < m; i++) {
30 int u,v,c;
31 cin >> u >> v >> c;
32

33 e[i] = {c, u, v};
34 }
35

36 sort(all(e));
37

38 int cost = 0;
39 int cnt = k;
40 for (int i = 0; cnt < n-1; i++) {
41 auto [c,u,v] = e[i];
42

43 u = find(u);
44 v = find(v);
45 if (u == v)
46 continue;
47 cost += c;
48 cnt++;
49 dsu[u] = v;
50 }
51 cout << cost << "\n";
52 }

21/21

	Hidden Keys
	nm 100
	n,m 100
	nm 100000

	Moving Faster
	A tree
	k=1

	Ruined Chocolates
	Observation: All queries go through the root
	Observation: Two paths and an extra vertex
	Implementation

	Tram Tickets
	Baguette Magique
	Cut single centimeters
	10 meter baguette
	100 km baguette

	Catering

