
Second Round Theoretical

Solutions

Swiss Olympiad in Informatics

March 4, 2017

Swiss Olympiad in Informatics

Round 2 Theoretical, 2017

Fleptons
Subtask 1: Solve the Example (10 Points)

Any two opposite nodes of the marked circle are a valid solution for the problem
(there is one other, can you spot it?)

Subtask 2: Develop an Algorithm (50 Points)
The full 60 point solution runs in O(n · m log n).

We start the Dĳkstra algorithm from each of the nodes and during this graph traversal
we store not only the shortest path (in the beginning, when no path exists, mark each
entry with some arbitrary value, say −1), but additionally on each node, we have to store
the predecessor node of the Dĳkstra algorithm.

The first time an edge in the Dĳkstra algorithm visits a node, which it already visited
previously, with the same (shortest) distance, we can construct the solution. Since there
are two paths leading from x to y and their final edge is different, there has to be a node
z, where the two paths lastly split.
By backtracking from both paths (going down the path twice if need be) this node z

can be found. Now it is not guaranteed, that you find such a path starting from only a
single node, however when you start Dĳkstra from each point, you are guarenteed to
also start Dĳkstra at this node z and when you do, you are guaranteed to find such two
paths.
Dĳkstra can also be implemented in O(n · log(n) + m) to get a faster total runtime of
O(n2 · log(n) + n · m).

1 #include <iostream>
2 #include <queue>
3

2/17

Task fleptons

4 using namespace std;
5 struct edge {
6 int from, to, price;
7 };
8

9 bool operator>(const edge & lhs, const edge & rhs) {
10 if(lhs.price != rhs.price) return lhs.price > rhs.price;
11 if(lhs.to != rhs.to) return lhs.to > rhs.to;
12 return lhs.from > rhs.from;
13 }
14

15 //Since the priority queue searches for the largest element, but we want the smallest.
16 bool operator<(const edge & lhs, const edge & rhs) {
17 return lhs > rhs;
18 }
19

20 //Wobei 'graph' eine Adjazenzliste des Graphen ist.
21 pair<int, int> findNodes (const vector<vector<edge> > graph) {
22 //start from each vertex
23 for(int start = 3; start < graph.size(); ++start) {
24 vector<int> visited(graph.size(),-1); //by default -1, elsewise previous number
25 vector<int> cost(graph.size(),-1); //by default -1, elsewise cost
26

27 priority_queue<edge> pq;
28 pq.push({start,start,0});
29 while(!pq.empty()) {
30 edge current = pq.top();
31 pq.pop();
32 if(visited[current.to] == -1) {
33 visited[current.to] = current.from;
34 cost[current.to] = current.price;
35 for(const edge & neighbor : graph[current.to]) {
36 pq.push({neighbor.from, neighbor.to, current.price + neighbor.price});
37 }
38 } else if(current.price == cost[current.to]) {
39 //Mark each node in the newly found path with true
40 vector<int> mark(graph.size(), false);
41 do {
42 mark[current.from] = true;
43 current.from = visited[current.from];
44 } while(current.from != start);
45 mark[start] = true;
46

47 //Now track down the first found path until it meets a node, which the newly found path crosses.
48 current.from = current.to;
49 while(mark[current.from] == false) {
50 current.from = visited[current.from];
51 }
52 return {current.from, current.to};
53 }
54 }
55 }

3/17

Swiss Olympiad in Informatics

Round 2 Theoretical, 2017

56 return {-1,-1}; //no nodes found
57 }

Grading scheme

• Correct Idea / Pseudocode: 30 points
• Runtime: 10 points.
• Correctness: 5 points.
• Memory usage: 5 Punkte.

Subtask 3: Configuration for Detecting more Fleptons (40 Points)
There is only one configuration for n � 1, 2, 3, which is the trivial complete graph.

For the full point solution you can use a diamond shape, by putting one node on top
and one on the bottom. In the middle you place the remaining detectors in a line and
you finally connect each middle node once with the top node and once with the bottom
node. This leads to (n − 2) · 2 � 2n − 4 edges, which was required for the full points.

Another interesting solution was the complete graph, which fullfils the property,
because every neighbor is adjacent.

Grading scheme:

• Any quadratic solution: 15 points.
• Between linear and quadratic solution: 20 points.
• Any slower linear time solution: 25 points.
• 3 · N + c � 30 points.
• 2.5 · N + c � 35 points.
• 2 · N + c � 40 points.
• 1.5 · N + c � 45 points.

4/17

Task fleptons

If you only constructed a configuration for an odd/even number of detectors, you get
half of the points above respectively.

5/17

Swiss Olympiad in Informatics

Round 2 Theoretical, 2017

Teleport
Subtask 1: Solve some Network (10 Points)
All the available pairs of teleports between which mice can travel directly are shown in
the following picture.

(6,8,3)

(4,7,0)

(5,6,2)

(1,7,3)

(2,4,5)

(6,8,1)(4,8,0)

One of the possible maximum shortest distances is d(F,G) � 3.

Subtask 2: Network with Maximum Distance (45 Points)
One possible solution of this subtask, consisting of 20 teleports, is depicted below. The
links show all of the possible pairs between which aliens can travel directly. This is also
the maximum solution, which has been found by a bruteforce algorithm.

(0,1,2) (3,4,5) (0,1,6) (2,3,4) (0,5,6) (1,2,3) (0,4,5) (1,3,6) (0,2,4) (1,3,5)

(2,4,6)(0,3,5)(1,4,6)(0,2,3)(1,4,5)(0,3,6)(1,2,5)(0,3,4)(2,5,6)(0,1,4)

Subtask 3: Bound for Maximum Distance (45 Points)
First observation is that we are only interested in networks that form a single "chain" of
teleports V0 , . . .Vn , where one can travel between all Vi and Vi+1, but not any other pair,
since we can always remove leftover teleports to keep only the path of desired length.

Many of your solutions claim that the number of different frequencies is bounded by a
small constant (between 7 and 10). However this is not the case, since one can also find a
chain that uses 11 frequencies:

(0,1,2) (3,4,5) (0,1,6) (2,3,4) (0,5,7) (1,3,8) (0,4,9) (1,2,5) (0,3,10)

The figure from Subtask B shows one possible optimal solution – by a bruteforce
algorithm we have shown that it consists of 20 teleports and hence the answer scoring
maximum number of points of this subtask is 19.

We are not aware of a mathematical proof of this bound. Instead we show a bit relaxed
upper bound on the maximum distance in a network that earns full score.

Let’s assume that teleports V0 and Vn are the most distant in a network and d(V0 ,Vn) �
n for some n and n is maximal possible. Let’s denote the teleports on the shortest path
between V0 and Vn sequentially as V0 ,V1 , . . . ,Vn−1 ,Vn . In our proof we will not need
any other teleports and hence we can omit those. (We can consider the smallest such
network. It will consist of teleports Vi , 0 ≤ i ≤ n only and it will be a path.)

6/17

Task teleport

Let {xi , yi , zi} be the three distinct operating frequencies of transmitters located in
teleport Vi . As V0 and V1 are connected, we know that {x0 , y0 , z0} ∩ {x1 , y1 , z1} � ∅.
Furthermore, since V1 is not connected with any Vi , 3 ≤ i ≤ n (otherwise we could
shorten the shortest path), we know that Vi uses one of the operating frequencies of V1.
The same argument holds for V0, too. As the operating frequencies in V0 and V1 are
distinct, we know that each Vi , 3 ≤ i ≤ n must use at least one operating frequency of
{x0 , y0 , z0} and at least one of {x1 , y1 , z1}.
These are in total 9 combinations of operating frequencies one of whichmust be present

in each Vi , 3 ≤ i ≤ n. Hence there exists a combination present it at least n−2
9 teleports.1

Without loss of generality let us denote this combination by {x0 , x1} and let the T :� n−2
9

teleports be denoted sequentially as they appear in the path by Vt1 ,Vt2 , . . .VtT . Let the
operating frequencies in Vti be {x0 , x1 , zti }. Note that all zti (for 1 ≤ i ≤ T) must be
different, otherwise we would be able to shorten our shortest path which would be
a contradiction. We will count how many distinct frequencies ztis we could have in
teleports in our paths.

Note that as Vti and Vt j share common operating frequencies, they are not connected
and hence in our path we must have Vti−1 such that frequencies of Vti−1 and Vti are
distinct (1 ≤ t ≤ T). But what would happen if no zt j (1 ≤ j ≤ T, j , i) would
be an operating frequency of Vti−1? Then operating frequencies of Vti−1 and Vt j (for
i , j) would be distinct and hence Vti−1 and Vt j would be connected, again yielding a
contradiction. Thus operating frequencies of Vti−1 must be all available zt j (i , j). As
Vti−1 can have at most 3 such frequencies with zti we can have at most 4 such frequencies
which implies n−2

9 � T ≤ 4 which gives us a bound n ≤ 38.

1The −2 accounts for V0, V1 and V2.

7/17

Swiss Olympiad in Informatics

Round 2 Theoretical, 2017

Carrot Garden
Subtask 1: Example

A B C D

E F

There are 3 possible final stages: {A, B}, {E, F} and {A, B, C,D , E, F}. The first two
we get when we start A, B and E, F respectively. With all other combinations all carrots
get infected eventually.

Subtask 2: Algorithm We start by transforming the problem to a graph problem. Each
carrot is a vertex in the undirected Graph G � (V, E). Each vertex is connected with each
other vertex and the weight of this edge is the distance between the two carrots.

We make the following observation: Suppose the vertices v1 , v2 , . . . , vr are a possible
final stage and x is the maximum distance between the vertices in this final stage. How
does the graph G look like if we remove all edges whose weight is bigger than x? On
one hand the vertices v1 , v2 , . . . , vr are not connected to the rest of the graph in any way,
otherwise «Stoffulus »could spread along this connection and it wouldn’t be a final stage.
On the other hand all vertices in v1 , . . . , vr are connected to each other vertices in this
set, after all each weight is smaller or equal than x(as x is per definiton the maximum of
all those weights).
To summarize, each final stage F � v1 , v2 , . . . , vr fulfils the follwing conditions:

• There is no edge from F to the rest of the graph(@x ∈ F, y ∈ V\F such that x , y ∈ E′).
• All vertices in F are mutually connected(∀x , y ∈ F we have x , y ∈ E′).

Those conditions are no just necessairy, but sufficient. That means, when we have a
set of vertices that fulfills those conditions, we know that it is a final stage(if we infect
2 arbitrary carrots in this set, we get thes set as final stage). To find all possible final
stages we can simply look for all possible x whether there is a subset that fulfills those
conditions.
The algorithm to conduct this procedure efficiently goes as follows: We remove all

edges from the graph and sort them by their weight. We then add them back in starting
with the smallest and observe the different components. When two edges have the same
weight, we insert them at the same time, that is to say we only look at the components
after we inserted all edges of the same weight. As soon as a component has k · (k − 1)
edges, where k is the number of vertices in that component, he fulfills both conditions
and we have found a new final stage. To observe the different components and to keep

8/17

Task carrots

track of the number of edges in a compoment we use the union-find data structure(see
round 2h) where we store in addition the number of edges in each component.

The sorting of the edges takes O(|E | · log |E |), the initialisation of the union-find takes
O(|V |) and the work in each iteration of the for-loop takes constant time(all operation
on union-find are O(1)). The graph is fully-connected thus we have |E | � |V |(|V |−1)

2 and
we get our total runtime complexity O(n + n2 · log n2) � O(n2 · log n). The memory
complexity is O(n2).

1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4 #include <vector>
5 #include <algorithm>
6 using namespace std;
7

8

9 struct union_find {
10 vector<int> parent;
11 vector<int> size;
12 vector<int> num_edges;
13 vector<bool> counted;
14

15 union_find(int n) {
16 parent.resize(n);
17 num_edges.resize(n);
18 size.resize(n, 1);
19 counted.resize(n);
20

21 for(int i = 0; i < n; i++)
22 parent[i] = i;
23 }
24

25 int find(int u) {
26 while(u != parent[u]) {
27 parent[u] = parent[parent[u]];
28 u = parent[u];
29 }
30 }
31

32 void unite(int v, int u) {
33 int rv = find(v);
34 int ru = find(u);
35

36 if(rv == ru) {
37 num_edges[rv]++;
38 } else {
39 int e = num_edges[rv] + num_edges[ru];
40 int s = size[rv] + size[ru];
41 if(rand()%2) {
42 parent[ru] = rv;
43 } else {

9/17

Swiss Olympiad in Informatics

Round 2 Theoretical, 2017

44 parent[rv] = ru;
45 }
46 counted[parent[ru]] = false;
47 num_edges[parent[ru]] = e;
48 size[parent[ru]] = s;
49 }
50 }
51

52 int count_new_components() {
53 int count = 0;
54 for(size_t i = 0; i < parent.size(); i++) {
55 if(i == parent[i] && !counted[i]) {
56 if(num_edges[i] == size[i]*(size[i]-1)/2) {
57 count++;
58 counted[i] = true;
59 }
60 }
61 }
62 }
63 };
64

65

66 struct edge {
67 int u;
68 int v;
69 int weight;
70

71 bool operator<(edge const &e) const {
72 return weight < e.weight;
73 }
74 };
75

76 int carrots(int n, vector<edge> edges) {
77 sort(edges.begin(), edges.end());
78 union_find uf(n);
79 int result = 0;
80

81 int last_x = -1;
82 for(edge& e : edges) {
83 uf.unite(e.u, e.v);
84 if(last_x != e.weight) {
85 last_x = e.weight;
86 result += uf.count_new_components();
87 }
88 }
89 cout << result << "\n";
90 }

Grading scheme:
Brute-force O(n5): 20 points.
Brute-force O(n4): 40 points.
Solution using MST: O(n3): 70 Points.
Solution using Union-Find: 90 Points.

10/17

Task carrots

The points above are distributed as follow:
Idea/Description of the algorithm: 50%
Pseudocode: 20%
Correctness: 20%
Complexity Analysis: 10%

11/17

Swiss Olympiad in Informatics

Round 2 Theoretical, 2017

Cake Protection Agency

Subtask 1: Latest Starting Time

We can compute the times (t1 � T, t2 , . . . , tk−1 , tcake) at which mouse Gehr arrives at
each of the vertices (v1 � vgehr , v2 , . . . , vk−1 , vk � vcake) by summing up the weights
along the edges that mouse Gehr travels along on his path. The CPA agent can prevent
the evil plot if it either reaches one of the vertices (v1 � vgehr , v2 , . . . , vk−1) at time
(t1 � T, t2 , . . . tk−1) or if it reaches the final vertex at time tk − 1. Hence the resulting last
possible leaving time for the CPA agent is the maximum of maxk∈{1,...,k−1}(tk −d(vcpa , vk))
and tk − 1 − d(vcpa , vcake). To compute this result, it is actually enough to only consider
tk−1 and tk , because we could imagine the agent moving along a shortest path to
vk−1 simultaneously with mouse Gehr catching him only there. (This establishes
that tk − d(vcpa , vk) ≥ maxk∈{1,...,k−2}(tk − d(vcpa , vk)).) The result is then given by
max(tk−1 − d(vcpa , vk), tk − 1 − d(vcpa , vcake))
We use Dĳkstra’s Algorithm to compute the distance of vcpa to all other nodes in the

graph. The running time and the additional memory usage are dominated by Dĳkstra’s
algorithm and are therefore given by O(|V | log |V | + |E |) and O(|V |) respectively.1

1 struct Edge {
2 int to;
3 int weight;
4 };
5 struct Node {
6 vector<Edge> out;
7 };
8 int sub1(const vector<Node> &G, int v_cpa, int v_gehr, int v_cake,
9 const vector<int> &p, int T) {

10 int t_i = T, t_cake = T;
11 for (int i = 1; i < (int)p.size(); i++) {
12 t = t_cake;
13 for (Edge &e : G[p[i - 1]]) {
14 if (e.to == p[i]) {
15 t_cake += e.weight;
16 break;
17 }
18 }
19 }
20 vector<int> distances = dijkstra(G, v_cpa);
21 return max(t - distances[p.size() - 1], t_cake - 1 - distances[v_cake]);
22 }

1Note that the implementation of Dĳkstra usually used in practice has a larger asymptotic running time:
O((|V | + |E |) log |V |).

12/17

Task cake_protection_agency

Subtask 2: Plenty of Agents
As we have an unlimited supply of agents, the course of action that limits mouse Gehr
the most, after they have been dispatched, is to send one agent to each vertex, as quickly
as possible. Mouse Gehr can then only reach those vertices that the agents are not able
to reach before him (or possibly at the same time, with the exception of vcake).
Further note that without loss of generality, mouse Gehr will always travel along a

shortest path. To see why this is the case, note that it is always better for mouse Gehr to
be at a given vertex earlier rather than later. This immediately excludes the possibility
that mouse Gehr might move around in cycles. Assume that mouse Gehr successfully
moved from vertex vgehr to vertex w along some (simple) path p that is not a shortest path.
Now consider some shortest path q from vertex vgehr to vertex w. As by assumption,
p , q, there are vertices that are in q but not in p. The only reason why mouse Gehr
might need to avoid those vertices and take a longer path instead is because the CPA can
reach a vertex x among them at least as early as mouse Gehr. However, this immediately
implies that the CPA will reach the vertex w strictly earlier than mouse Gehr (the CPA
can just move along a shortest path from vertex x to vertex w). Therefore, it will catch
him even if w � vcake, which means that mouse Gehr cannot gain anything by moving
along a path that is not a shortest path.
We can compute for each vertex v, at which time tv the agents would need to be

dispatched to prevent mouse Gehr from entering this vertex, by subtracting the time it
takes the CPA agents to reach the vertex from mouse Gehr’s earliest possible arrival time
at this vertex (for v � vcake, we additionally subtract 1). The correct result will be tv for
one of the vertices v. (Note that tv can be∞ if v is not reachable by mouse Gehr and −∞
if it is reachable by mouse Gehr but not by the CPA agents.)
Observe that if the agents are dispatched at a certain time that allows them to still

catch mouse Gehr, they are either able to reach the cake strictly before mouse Gehr, or
they will be able to block all vertices surrounding the cake at or before the time that
mouse Gehr can reach any of them. (Because if they can catch mouse Gehr earlier than
at the surrounding vertices, they could also block the surrounding vertices in time by
moving there on shortest paths.)

Let Γ−(v) denote the set of vertices from which v can be reached by following a single
edge in E. The final result is max(tcake ,minv∈Γ−(vcake) tv). (The agents can choose to either
block the cake or the vertices surrounding the cake, and they will choose the option that
allows them to be dispatched later.)

1 int sub2(const vector<Node> &G, int v_cpa, int v_gehr, int v_cake, int T) {
2 vector<int> d_cpa = dijkstra(G, v_cpa);
3 vector<int> d_gehr = dijkstra(G, v_gehr);
4 vector<int> t(G.size()), gamma;
5 for (int i = 0; i < (int)G.size(); i++) {
6 t[v] = T + d_gehr[i] - d_cpa[i] - (i == v_cake);
7 for (Edge &e : G[i]) {
8 if (e.to == v_cake) {
9 gamma.push_back(i);

13/17

Swiss Olympiad in Informatics

Round 2 Theoretical, 2017

10 break;
11 }
12 }
13 }
14 int worst = INFINITY;
15 for (int v : gamma) {
16 worst = min(worst, t[v]);
17 }
18 return max(t[v_cake], worst);
19 }

(In this implementation, the vectors t and gamma could be elided by performing
the necessary computations inline. This implementation was chosen to keep a close
correspondence to the solution text.)

Subtask 3: One Agent
We can again assume without loss of generality that mouse Gehr moves on a shortest
path towards vcake. Additionally, we can observe that this is true also for the CPA agent:
If the agent manages to catch mouse Gehr while not on a shortest path towards the
cake, the agent can alternatively choose to reach vcake strictly before mouse Gehr, while
being dispatched at the same time. Furthermore, we can assume that if the agent catches
mouse Gehr somewhere on the way, the agent moves onto the same field at precisely the
same time. (Otherwise, the agent could alternatively just move to the cake instead of
waiting until mouse Gehr arrives and, again, reach the cake strictly before mouse Gehr.)

There are now two cases to consider:

1. The agent catches mouse Gehr by moving to vcake at a strictly earlier time.
2. The agent catches mouse Gehr somewhere on the way, by moving to the same

vertex at the same time.

For case 1, the latest possible time T′cake to dispatch the agent is easy to compute. The
final result is either T′cake or T′cake + 1. For case 2, the agent catches mouse Gehr before
he reaches the cake. We will now need to compute which one it is. It suffices to check
whether the agent can catch mouse Gehr by moving onto the same vertex simultaneously.

We compute the distance of each vertex to the cake by running Dĳkstra’s algorithm
once, starting at the cake (moving backwards along directed edges).

Let E′ ⊆ E denote all edges that are on a shortest path to the cake. (Those are precisely
the edges that connect two vertices whose difference in distance to the cake corresponds
precisely to the weight of the edge.)

We can then view the situation as a game: The game state consists of the two vertices
vg and va denoting the current vertex of mouse Gehr and the agent respectively. Note
that the agent and mouse Gehr might be “out-of-sync”, i.e. the two vertices of the agent
and mouse Gehr might be at different distances from the cake. We will allow the agent to
move if the agent is currently at a distance from the cake that is larger than the distance
of mouse Gehr to the cake, otherwise mouse Gehr moves. (This in particular means

14/17

Task cake_protection_agency

that mouse Gehr moves first if both the agent and mouse Gehr are currently at the same
distance to the cake. This corresponds to the constraint that mouse Gehr moves first if he
and the agent need to make a simultaneous decision.) Both mouse Gehr and the agent
only move along edges in E′.

A position is a winning position for the agent if and only if the agent can catch mouse
Gehr starting from this position by moving onto the same square, unless mouse Gehr
reaches the cake first.

We can set up the following recurrence describing the winning positions for the agent:

• If mouse Gehr reaches the cake, the agent loses.
• If the agent is at least as close to the cake as mouse Gehr, the current position
(vg , va) is a winning position for the agent if and only if all positions (vg , v′a) that
mouse Gehr can reach by moving along an edge from E′ are winning positions for
the agent.

• If mouse Gehr is closer to the cake than the agent, the current position (vg , va) is a
winning position for the agent if and only if the agent can reach a winning position
(v′g , va) by moving along an edge from E′.

More formally: Let d(v , vcake) be the distance from vertex v to the cake. We denote by
win(vg , va) � 1 the fact that from the initial position (vg , va), the agent can catch mouse
Gehr by moving to the same square at the same time.
Let Γ′+(v) ⊆ V denote the set of all vertices reachable from vertex v by following a

single edge from E′.2

win(vg , va) � 0, for vg � vcake ,

win(vg , va) � 1, for vg , vcake and vg � va ,

win(vg , va) �
∧

v′g∈Γ′+(vg)
win(v′g , va), for vg , vcake , vg , va and d(va , vcake) ≤ d(vg , vcake),

win(vg , va) �
∨

v′a∈Γ′+(va)
win(vg , v′a), for vg , vcake , vg , va and d(vg , vcake) < d(va , vcake).

Because there are no cycles in the graph G′ � (V, E′), we can evaluate the above
recurrence using dynamic programming. It is easiest to directly encode the recurrece as
a recursive function and to apply memoization.

The final result is

T′ � T + d(vgehr , vcake) − d(vcpa , vcake) − 1 +win(vgehr , vcpa).

2A note on notation: We denote by a ∧ b the boolean operation “and” and by a ∨ b the boolean operation
“or”.

∧
and

∨
are to ∧ and ∨ as

∑
is to +. We have

∧
x∈{} f (x) � 1 and

∨
x∈{} f (x) � 0.

15/17

Swiss Olympiad in Informatics

Round 2 Theoretical, 2017

I.e. if the initial positions of mouse Gehr and the agent are a winning position for the
agent in the game we have defined, the agent can be dispatched at a time such that the
agent would reach the cake at the same time as mouse Gehr. Otherwise, the agent needs
to leave one time unit earlier in order to reach the cake strictly before mouse Gehr.
The total running time of this solution is dominated by the dynamic programming

algorithm, whose running time can be bounded by O(|V | (|V |+ |E |)). The total additional
memory usage is dominated by the DP table and is therefore at most O(|V |2).

1 const vector<Node> &G;
2 int v_cpa, int v_gehr, int v_cake;
3 int T;
4

5 vector<int> d_gehr, d_cpa, d_cake;
6 bool inEPrime(int from, const Edge &e) {
7 return d_cake[from] + e.weight == d_cake[e.to];
8 }
9

10 vector<vector<int>> memo;
11 int win(int v_g, int v_a) {
12 if (v_g == v_cake) {
13 return 0;
14 }
15 if (v_g == v_a) {
16 return 1;
17 }
18 if (memo[v_g][v_a] != -1) {
19 return memo[v_g][v_a];
20 }
21 bool result;
22 if (d_cake[v_a] <= d_cake[v_g]) {
23 // Gehr's turn
24 result = true;
25 for (Edge &e : G[v_g]) {
26 if (inEPrime(v_g, e)) {
27 result = result && win(e.to, v_a);
28 }
29 }
30 } else {
31 // Agent's turn
32 result = false;
33 for (Edge &e : G[v_a]) {
34 if (inEPrime(v_a, e)) {
35 result = result || win(v_g, e.to);
36 }
37 }
38 }
39 memo[v_g][v_a] = result;
40 return result;
41 }
42 int sub3() {
43 d_cpa = dijkstra(G, v_cpa);

16/17

Task cake_protection_agency

44 d_gehr = dijkstra(G, v_gehr);
45 d_cake = dijkstra(G, v_cake);
46 return T + d_gehr[v_cake] - d_cpa[v_cake] - 1 + win(v_gehr, v_cpa);
47 }

17/17

	Fleptons
	Solve the Example (10 Points)
	Develop an Algorithm (50 Points)
	Configuration for Detecting more Fleptons (40 Points)

	Teleport
	Solve some Network (10 Points)
	Network with Maximum Distance (45 Points)
	Bound for Maximum Distance (45 Points)

	Carrot Garden
	Cake Protection Agency
	Latest Starting Time
	Plenty of Agents
	One Agent

