
Second Round Theoretical

Solutions

Swiss Olympiad in Informatics

March 7, 2020

Round 2 Theoretical, 2020
Task evaporation

Evaporation
Task Idea Daniel Rutschmann
Task Preparation Yunshu Ouyang
Description English Yunshu Ouyang
Description German Benjamin Schmid
Description French Yunshu Ouyang
Solution Yunshu Ouyang & Daniel Rutschmann

Subtask 1: (10 Points)
The answer is 4, one solution would be to first add 3 and 4 together, then, after a minute, there
will be one glass with 6, one with 1 and all others 0. Then we add 6 and 1 together to get 7. After
that, 3 minutes pass so that glass with 7 will in the end only contain 4 milliliters.

Subtask 2: (20 Points)
Let us first consider the case : ≥ =. In this case, a glass will never empty due to evaporation, so
the only way of emptying a glass is to pour it into another one. (If : = =, some glasses might get
empty right at the end.) After each minute, we loose one milliliter of water for every non-empty
glass. We should hence minimize the number of non-empty glasses by always pouring an
(arbitrary) non-empty glass into another non-empty glass. This reduces the number of non-empty
glasses by one. If we do this, we loose = − 8 − 1 milliliters after the 8-th minute, and one milliliter
in the last minute (where all of the water is in a single glass and we hence can’t further reduce
the number of non-empty glasses). Hence after = minutes, we’re left with

: · = −
=−2∑
8=0
(= − 8 − 1) − 1 = : · = − =(= − 1)

2 − 1

milliliters of water. This is optimal, as we minimize the total evaporation.
For : < =, we still try to minimize the total evaporation. During the first : minutes, a glass will

never empty due to evaporation, so we can only reduce the number of non-empty glasses by one
for each minute. After : minutes, all glasses we didn’t interact with will be empty and the best
thing we can do is to have all water in a single glass, in which case we loose only one milliliter
during each of the remaining = − : minutes. Hence after = minutes, the maximum number of
milliliters we could be left with is

max
(
0, : · = −

:−1∑
8=0
(= − 8 − 1) −

=−1∑
8=:

1
)
= max

(
0, :(: + 1)

2 − (= − :)
)

The following two-phase strategy achieves this:
1. During the first : minutes, pour any non-empty glass into the first glass.
2. After that, all the remaining water is in the first glass, so we just wait for the remaining
= − : minutes.

In the first phase, we reduce the number of non-empty glasses by one each minute. Since we only
pour into the first glass, all other glasses will be empty after : minutes. Hence during phase two,
the first glass is the only non-empty one.

Summary: The answer is given by the following formula{
: · = − =(=−1)

2 − 1 for : ≥ =
max(0, :(:+1)

2 − (= − :)) for : < =

This can be computed in constant time.
Runtime: $(1)Memory: $(1) (We only need to know = and :)

2/13

Round 2 Theoretical, 2020
Task evaporation

Subtask 3: (30 Points)
There are a few observations to make:

• It never makes sense to first wait and then do pouring operations. Doing the pouring
operations as soon as possible reduces the number of non-empty glasses and hence the
evaporation. We should therefore first do all our pouring operations and then wait for the
remaining minutes.

• Pouring water is never worse than not pouring water. Consider two glasses with values 0,
resp. 1. After one minute, they will be 0 − 1, resp. 1 − 1, so we have lost 2 milliliters in
total. However, by pouring one into the other, we will only lose 1 milliliter from the two
glasses. Hence if there are two or more non-empty glasses, we should always do a pouring
operation.

• Every minute, the amount of water you lose is equal to the number of non empty glasses.
This is because every minute each glass with a positive number of milliliters loses one
milliliter.

• Glasses that contain less water will empty sooner. The time used to empty one glass with 0
milliliters is 0 minutes.

By combining those observations, we get that it is optimal to always reduce the number of
non-empty glasses. And, as glasses with less water empty sooner, it is better to leave glasses with
less water to get emptied than to wait for glasses with more water. Hence, it is optimal to pour the
glass with the most water into the glass with the second most water at the end of every minute.

Proof of optimality: Formally, consider this solution after < minutes. At that point, we’re
either left with exactly one non-empty glass, or all glasses 8 with at 08 ≤ < are empty (due to
evaporation) and < − 1 other glasses are empty (due to pouring). In either case, it is impossible to
have more empty glasses after < minutes. Hence this solution maximizes the number of empty
glasses at each point and is thus optimal.

Implementation: The straight-forward implementation would be to simulate the process. This
consists of = steps where in each step, we first add the two maximum values together and then
decrease all positive values in the list by 1. This can be sped up to O(= log =) by sorting or by
using a max-heap or segment tree. Since 08 ≤ =, you can use counting sort to get O(=) time.

Since we know the integers form a permutation of {1, . . . , =}, a better solution is to realise that
the glass with = milliliters will loose exactly = milliliters due to evaporation at the end of the =
minutes. Suppose glass 8 contains 8 milliliters of water. For all the other glasses, we can just add
the amount that is left at the time of pouring that glass into the glass =. That means we can pour
8 − (= − 1− 8) = 2 · 8 − = + 1 milliliters of water from the glass 8 if 2 · 8 ≥ = − 1. Hence, the answer is:

=−1∑
8=d =−1

2 e
(2 · 8 − = + 1) = b =

2

4 c

Runtime:

• Straight-forward implementation: O(=2) (naive), O(= log =) (with sort or heap) or O(=)
(with counting sort).

• Closed form solution: $(1)

Memory:

• Straight-forward implementation: $(=)
• Closed form solution: $(1)

3/13

Round 2 Theoretical, 2020
Task evaporation

Subtask 4: (40 points)
In subtask 3, we’ve shown that it is always optimal to pour the glass with the most water into the
glass with the second most water at the end of every minute. There is again a straight-forward
quadratic solution that just simulates this process.

Another approach would be to reuse the same idea as the last subtask as we know the ordering
of the operations we need to do. One way would be to sort the values in increasing order. Then,
similar to the closed form of the previous subtask, this time, the answer is:

max
(
0,

=−1∑
8=0

max(08 − (= − 8 − 2), 0) − 1 − =
)

Instead of sorting the values, one could also use some data structure which give you the greatest
value such as a heap.

This can be sped up to O(=) with the following observation: We don’t care about the order of
the glasses with 08 > =, as those glasses will never empty. Hence we only need to sort the glasses
with 08 ≤ =. This can be done in linear time with counting sort.

An alternative solution is to partition the glasses into two sets: one set containing all glasses
which will be empty and the other containing those which will be used. Suppose now we lose :
of the glasses. Then, we can construct the solution: we take the = − : largest values and merge
them one by one. By definition of :, all = − : values are ≥ : so we will only lose

(= − :) · (= − : − 1)
2

milliliters of water in total for the = − : large values. The question now becomes: which : do we
want? The best : should be the greatest : such that the : largest values are all greater or equal to
:. In order to find which : is the best one we can use binary search.
This idea can be further optimized in the following way: we first look at the median value < of

the input, and check whether it can be the best : (the best : being the greatest value such that the
: largest values are all ≥ to :). Two possibilities then appear:

• If less than < values are ≥ <, than : should be smaller. In this case, the larger half values
are already ≥ </2 so they are also ≥ : so we only need to check the other =/2 candidates.

• If more than < values are ≥ <, then then : ≥ <. The smaller half of the values will
evaporate anyways since they evaporate in less than < minutes and < ≤ :. So we need to
check only the upper half =/2 candidates.

We need to iterate this procedure again and again by taking the median of the median on the
remaining candidates. At the :-th step, the runtime is of O(=/2:−1)so in total the runtime is:

O
(dlog(=)e∑

:=1

=

2:−1

)
= O(=)

Runtime:

• Straight-forward implementation: O(=2)
• Sorting / heap / binary search: O(= log(=))
• Partition by 08 ≤ =, then counting sort: O(=)
• Quickselect: O(=)
Memory:

• Straight-forward implementation: O(=)
• Closed form solution: O(=)
• Quickselect: O(=)

4/13

Round 2 Theoretical, 2020
Task numberhunt

Number Hunt
Task Idea Monika Steinova
Task Preparation Johannes Kapfhammer
Description English Johannes Kapfhammer
Description German Johannes Kapfhammer
Description French Florian Gatignon
Solution Johannes Kapfhammer

Subtask 1: Analyze Stofls Table (10 points)
In a first step, write down all possible values matching the bit pattern. This is done in column
iteration 1. Then, notice the following: There are identical rows “?10”, and their options
are {2, 6}. As both are different, all other rows can not be 2 or 6, so we can remove that
option from them. We do the same for the row “1?1”. The sets can’t be further reduced.
Num 12 11 10 Iteration 1 Iteration 2
00 1 0 {2, 6} {2, 6}
01 1 {4, 5, 6, 7} {4}
04 1 1 {5, 7} {5, 7}
02 1 0 {2, 6} {2, 6}
03 0 {0, 2, 4, 6} {0}
05 1 1 {5, 7} {5, 7}
06 {. . . } {1, 3}

Ask query @(6, 1). If @(6, 1) = 1 then 06 = 3, if @(6, 1) = 0 then 06 = 1.

Subtask 2: Optimal Algorithm (90 points)

Num Bits
00 = 3 0
01 = 1 0
02 = 6 1
03 = 7 1
04 = 0 0
05 = 4 1
06 = 2 0

Missing number must be “1??”

Num Bits
00 = 3 0
01 = 1 0
02 = 6 1 1
03 = 7 1 1
04 = 0 0
05 = 4 1 0
06 = 2 0

Number must be “10?”

Num Bits
00 = 3 0
01 = 1 0
02 = 6 1 1
03 = 7 1 1
04 = 0 0
05 = 4 1 0 0
06 = 2 0

Number must be “101’

The idea is the following: we query the first bit of every integer and count the number of
occurrences of 0s and 1s. Since from 0 to 2= − 1 exactly 2=−1 numbers start with 0 and 1 and one
number is missing, we either are missing a 1 or a 0. So we check which is occurring less often
and then we know the first bit.
Thus we can “throw away” all numbers starting with a certain bit. The remaining numbers

have the same property as before, if we ignore the first bit: They are from 0 to 2=−1 − 1, unique,
and exactly one number is missing. So we can apply the algorithm recursively.
The following code implements this idea:

1 // n: number of bits
2 // elements: indices of the 2^n-1 elements
3 int solve(vector<int> elements, int n) {
4 if (n == 0) return 0;
5 array<vector<int>, 2> side; // all elements starting with 0 (1) are in side[0] (side[1])

5/13

Round 2 Theoretical, 2020
Task numberhunt

6 // partition elements into the two sides
7 for (auto x : elements)
8 side[q(x, n-1)].push_back(x);
9 // find out which side is missing a number

10 int missing_bit = side[0].size() < side[1].size() ? 0 : 1;
11 // recurse on the first n-1 bits in the relevant subset
12 return (missing_bit<<(n-1)) | solve(side[missing_bit], n-1);
13 }

Proof of correctness
The goal is to prove the correctness by induction on =. In order for induction to work out, it is
important to state the intended behaviour of the function (other than “it just works”). Properly
defining the properties of input and output allows us to make use of those properties to prove
correctness, which makes the whole proof a lot easier.

The function solve takes as input =, the number of bits, and elements, a set of size 2= − 1 with
indices of the candidate numbers, where the that the last = bits of them are unique. Then, the
function returns the last = bits of the missing number.

Base case n = 0: Because 0 is only one number with 0 bits, this case is handled correctly.
Induction step: Suppose our algorithm works for = − 1. We have to show that it works for =. By

the definition of solve, the vector elements has size 2= − 1. Thus if we look at the first bit,
either side[0] or side[1] has size 2=−1 − 1 and the other has size 2=−1 − 1 (this is because
the last = bits are unique and there are only 2= possibilities). Let B be the smaller side.
Observe that B has size 2= − 1 and the last = − 1 bits of them are unique (as by assumption
the first = bits are unique and they share the same bit at index = − 1). Therefore we can
apply the induction hypothesis and get that solve(B, = − 1) correctly identifies the last = − 1
bits of the missing number. Because we know the = − 1-th bit, the bitwise or of that with
the result give us the value of the last = bits.

Analysis of Queries
We define &(=) as the number of queries made for a call of solvewith parameter = (for arbitrary
values of elements). We make one query for each element in the vector, so we do 2= − 1 direct
calls. But we also do some indirect calls in the recurrence. Thus

&(=) = 2= − 1 +&(= − 1)
&(0) = 0

Let’s compute some values and try to come up with a hypothesis:
= 0 1 2 3 4 5 6 7 n

&(=) 0 1 4 11 26 57 120 247 2=+1 − = − 2
&(=) + = + 2 2 4 8 16 32 64 128 256 2=+1

To prove this, we again use induction. We want to formally prove that &(=) = 2=+1 − = − 2.

Base case n = 0: &(0) = 0 = 21 − 0 − 2.
Induction step: Suppose the formula is true for = − 1. We verify:

&(=) = 2= − 1 +&(= − 1) = 2= − 1 + (2= − (= − 1) − 2) = 2 · 2= − = − 1 + 1 − 2 = 2=+1 − = − 2

Analysis of Queries, Time and Space
The computation of the function is proportional (for some fixed constant) to the number of
queries it makes and thus the running time is O(� · 2=+1 − = − 2) = O(2=).

We can also prove it by hand. Let)(=) be the time required for a call of solve with parameter
= (for arbitrary values of elements). We go through the vector once, the computation without
the recursion takes at most � · 2= + � time, for some constants � and �.

6/13

Round 2 Theoretical, 2020
Task numberhunt

Important note: the wiki on “Introduction to Algorithm Design” has a similar recurrence
where it states “To formally prove it, we do not want to use O-notation because hiding constants
in a recurrence can be dangerous.”. While it can work out if you do it correctly, you can very
easily “cheat” the notation and get incorrect results. Thus we work with constants and only at
the end apply the O-notation.

)(=) = � · 2= + � +)(= − 1)
)(0) = �

This recursion can be proven again by induction (similar to the number of queries) and we get
)(=) = 2� · (2= − 1) + � · = = O(2=). Because we can’t use more memory than time, we also have
O(2=)memory.

7/13

Round 2 Theoretical, 2020
Task binnabike

Binnabike
Task Idea Joël Mathys, Ian Boschung
Task Preparation Yunshu Ouyang
Description English Yunshu Ouyang
Description German Jan Schär
Description French Yunshu Ouyang
Solution Johannes Kapfhammer

Subtask 1: (5 Points)
The optimal solution is the direct path 0− 5−1 without any intermediate station. This path has
cost 5.

Subtask 2: (35 Points)
Since Binna has unlimited time, we only need to minimize the total amount of money she has to
spend. This is not necessarily the shortest path, because coming to a station can give a discount
of up to 3. One idea that comes to mind would be reducing cost 3 from every edge going out of
a station, but this has two problems: (a) the edge weights might become negative (so Dĳkstra
won’t work anymore) and (b) if the distance to the next station is less than 3 Binna won’t get the
full discount. Any correct solution needs to find a way to cope with those two problems.

DP does not work
Let’s try the following DP approach. At any position on a ride, we keep track of the “total cost”
and the “time since last station”. When driving, we increase the “time since last station” until we
reach another station. Then we compute the cost of that travel, which is “time since last station”
minus 3, with a minimum of 0.

DP[E][CB] = minimum cost from 0 to E, where the time since last station has been CB
DP[E][CB] = min

D∈#(E)
2=cost(D,E)

2>CB

DP[E][CB − 2]

DP[B][0] = min
CB
DP[B][CB] + CB if B is a station

DP[0][3] = 0

As for most DPs, the argument why this is correct is that we exhaustively cover all viable paths,
and such the minimum is achieved by the best path. We can find the solution at DP[1][0].

Unfortunately, we can not compute this DP so easily, because there are cycles. It is not clear in
which order we should compute the table. Always check your DP for cycles!

State Graph with full state
An easy way out of this problem is to do a state graph. We split vertex E into C+1 copies E0 , . . . , EC ,
where E8 represents DP[E][8]. We draw an edge of cost 0 between E8 and D9 if (D, E) is an edge in
� (the input graph) and if cost(D, E) = 9 − 8. Also we draw an edge of cost 8 from E8 to E0 for
every E that is a station. Then, the shortest path from 0 to E 9 is exactly what we want the value of
�%[8][9] to be, and in particular the solution to the problem is the distance from 00 to 10. For that
we run Dĳkstra.

Of course, when it “works” on the state graph we might think it could also “works” on the DP.
This is true: we need to compute the values in increasing order of values and the best way to do

8/13

Round 2 Theoretical, 2020
Task binnabike

this is storing the values in a priority queue. But that’s basically the same as Dĳkstra on the state
graph.
Runtime: O(C · (= log = + <))
Memory: O(C · =)

State Graph with discount level
We can reduce the dependence on C to 3 by redefining how the costs are computed. This time, we
keep track of the “total cost” and the “discount level” (where 3 means Binna has the full discount
available, i.e. is at a station, and 0 means she has completely used it up). When driving, we pay
from the discount level (i.e. subtracting the costs there) until that reaches 0. Only once it is 0, we
add the driving costs directly to the total cost. When reaching a station, we recharge the available
discount back to 3. This is equivalent to what happens in the task statement, but it allows for
easier solutions.

(Note that it the definition of a discount level is equivalent to the time since the last station, but
capped at 3, which leads to an equivalent solution where one dimension is reversed.)

Concretely, we split each node into 3+ 1 copies, the 9-th of which means that available discount
is 9. Let E 9 denote vertex E with discount level 9. For every edge (D, E) of cost 2 we add edges
(D9 , E 9−3) of cost 0 for 9 ≥ 3 and (D9 , E0) of cost 3− 9. The graph now has has = · 3 vertices and < · 3
edges. We can run Dĳkstra (note all edges have non-negative weight) on it to find the shortest
path from B3 to C 9 (for any 9) and get the solution.
Runtime: O(3 · (= log = + <))
Memory: O(3 · =)

Reducing to a Station-Station Graph
We can do better by reducing the graph � of = vertices into a graph � of : vertices consisting of
only the stations. For this, we run Dĳkstra (all edges have non-negative weight in the statement)
from every station to compute the distance between it and any other station. Next, we subtract 3
from every distance to account for the discount of 3, and take the maximum of 0 and the new
cost since discounts doesn’t accumulate.
In this new graph, we can run Dĳkstra (or Floyd-Warshall; in any case the edge weights are

still non-negative) to get the shortest path from 0 to 1.
Runtime: O(: log = + < + :3)
Memory: O(= + < + :2)
Since :3 < = and : log = < 3 · = log =, this running time is better than the previous one.

Subtask 3: (60 Points)
We can’t reuse the solution of the previous subtask, but we can reuse some ideas from it. As we
don’t have infinite time anymore, we somehow need to keep track of the time as well.

All of the solutions shown below arewith “discount levels”, but of course there are (suboptimal)
solutions that work without those.

State Graph
We can use the state graph from before and additionally split up each vertex into C + 1 copies to
account for the time needed to reach it. This is essentially the same solution as the DP below.
With Dĳkstra, it is slower by a log factor. One can get rid of that by noticing that the graph is a
DAG (directed acyclic graph) and to compute it using DP.

9/13

Round 2 Theoretical, 2020
Task binnabike

DP with time, position and discount level
We try the following DP approach:

DP[E][CE][ℓ] = minimum cost from 0 to E within CE minutes and a discount level of ℓ
= min

D∈#(E)
2=cost(D,E)

2≥ℓ

DP[CE − 2][D][min(3, ℓ + 2)] +min(3 − ℓ , 2)

DP[0][0][3] = 0

We argued in subtask 2 that the modelling with discount levels is correct. All possible paths are
considered by this DP.

But why does it work this time? Because we added a parameter CE and longer paths take longer
time. So we can compute the states in increasing CE . Because we only consider strictly smaller
values of CE (note the edge weights are non-negative), we don’t have any cyclic dependencies.
Runtime: O((= + <) · C · 3)
Memory: O(= · C · 3)

We can make two independent optimizations on this DP. Combining them leads to the optimal
solution.

DP on Station-Station Network
The first optimization is that we don’t need all vertices E. Like in the second subtask, we can
make a station-station network with only : vertices. Then, we do the DP from before (rather than
Dĳkstra) on this second network.

It is very important to note here that some of the edge costs are now 0. Then, the DP gets tricky,
because there could be cycles! If vertices 0 and 1 are connected with an edge of distance 0, then
both should have the same table. But if 0 is computed before 1, and 1 has the smaller value, this
will not reach 0. There are two possible fixes: either merge all vertices with distance 0 into one
mega-vertex, or do the DP twice, once in increasing order of vertex index, and once in decreasing
order.
Runtime: O(: · (= log = + <) + :2 · C · 3)
Memory: O(= + < + : · C · 3)

DP with optimal time ±dt
The second optimization is that we don’t need all values CE . We can make the following
observations:

• No optimal solution will visit the same station twice. This is because the discount does not
accumulate. Note that we may visit the same vertex multiple times, but not the stations.

• Look at some path that travels between stations on shortest paths. By inserting another
station into the path, you can save a cost of at most 3. Because the path will be longer and
the discount this station gives is only 3.

• Compared to the shortest path from 0 to 1, by going over : stations, one can save at most
3 · :. So if the shortest path from 0 to E is 3(0, E), the minimal cost will need at most
3(0, E) − 3 · : time.

• Thus, the only times we need to consider for vertex E are between 3(0, E) − 3 · : and 3(0, E).
So only 3 · : values instead of C.

By precomputing dist(0, E) for all E with a single Dĳkstra, ignoring all times outside of the
viable range, and carefully computing the DP states in the correct order, we get a running time of
O((= + <) · 32 · :) instead of O((= + <) · C · 3).
Runtime: O((= + <) · 32)
Memory: O(= · 32)

10/13

Round 2 Theoretical, 2020
Task binnabike

DP on Station-Station Network with optimal time ±dt
We combine both approaches. First we create the station-station network using Dĳkstra. Then
we compute the DP where we only consider 3 · C values per vertex.
Runtime: O(: · = log = + < + 3 · :3)
Memory: O(= + < + 3 · :)

11/13

Round 2 Theoretical, 2020
Task venice

Venice
Task Idea Johannes Kapfhammer
Task Preparation Stefanie Zbinden
Description English Martin Raszyk
Description German Stefanie Zbinden
Description French Florian Gatignon
Solution Stefanie Zbinden

Subtask 1: Example
The best solution for the example is two use two gondolas. This can be achieved by having one
gondola move from sight 4 to sight 6 and the other from sight 5 to sight 0.

Subtask 2: Many gondolas
Consider the following algorithm that constructs a gondola between 0 and any sight that is a leaf:

1. Read the list of edges and store them in an adjacency adi.
2. iterate over every sight, then if this sight is a leaf (that is, the size of adi of that sight is 1)

add a gondola from that sight to 0.

This algorithm runs in $(< + =), where < is the number of canals and = the number of sights,
but as the graph is a tree, we know that < = = − 1, and thus the algorithm runs in $(=). The
memory used is $(=).
To prove the correctness of this algorithm, we have to prove the following two things:
• The set of gondolas in the output is valid. That is, at each stop, there is at least one gondola

that stops there
• Any valid set of gondolas uses at least half the number of gondolas.

Validity Think of the input graph as a tree rooted at sight 0. Then the gondolas our algorithm
outputs are exactly the gondolas from any leaf to sight 0. As any sight lies on the path between
some leaf and the root of the tree, there is at least one gondola stopping at each sight.

Not too many gondolas Let : be the number of leaves in the graph. Then our algorithm uses at
most : gondolas (In fact it uses exactly : if 0 is not a leaf and : − 1 otherwise). We will show that
any valid set of gondolas uses at leas :/2 gondolas. Let D be a leaf. Then, a gondola only stops at
D if one of its endpoints is D itself. Thus, to cover every leaf, we need at least :/2, which is what
we wanted to prove. As : ≤ 2 · (:/2) we satisfy the constraint about the number of gondolas we
had to.

Subtask 3: Tight limit on gondolas
We saw in the previous section that we need at least :/2 gondolas, we will see that it is indeed
possible to always find a solution which uses only d:/2e many gondolas. (We need to round up,
as :/2 might not be an integer). Hence, what we have to do is pairing up the leaves in a smart
way.

Consider the following algorithm: we root the tree at node 0 and enumerate the leaves in the
order they were visited by the dfs. Then, we add a gondola between the 8-th and the 8 + b:/2c-th
leaf. An implementation of this might look like:
1 vector <int> adi;
2 vector <int> vis;
3 vector <int> leaves;
4 vector <pair <int, int> > gondolas;

12/13

Round 2 Theoretical, 2020
Task venice

5 void dfs(int node){
6 if (vis[node]) return;
7 vis[node] = 1;
8 if (adi[node].size() == 1){ // if node is a leaf add it to the list of leaves
9 leaves.push_back(node);

10 }
11 for (auto next : adi[node]) dfs(next);
12 }
13 int main(){
14 /* first read the input and store the graph in adi
15 construct the vector vis to be zero for every node*/
16 dfs(0);
17 int k = leaves.size(); // k is the number of leaves
18 for (int i=0; i+k/2<k: i++){
19 // add a gondola from i-th leaf to the (i+k/2)-th leaf
20 gondolas.push_back(leaves[i], leaves[i+k/2]);
21 }
22 }

The algorithm uses : − b:/2c = d:/2e gondolas, also, it runs in $(=) time and uses $(=)
memory. The only thing we have left to do is to prove that the set of gondolas the algorithm
constructs is valid.
Note that for the rest of the proof, we will consider the graph as a tree rooted at node 0. To

prove the validity, the following claim is useful:

Claim: Let D be a node. Then either, all leaves are contained in the subtree of D or there exists a gondola
that has one endpoint in the subtree of D and one endpoint that is not in the subtree of D.
Before we prove that claim, we will show why it is useful for the prove: Let D be a node and

assume there exists a leaf not contained in the subtree of D. Then, the lemma implies, that there
is a gondola starting in the subtree of D and ending outside of it. Note that every path from the
subtree of D to a node outside of that subtree has to contain D and its parent. Or, reformulated, if
the subtree of D does not contain all leaves, then there exists a gondola, that stops at D. Hence, to
prove validity, we only have to worry about nodes whose subtrees contain all the leaves. However,
there is only one such node, namely the root 0. Why? If the node 0 has only one child, then the
node 0 is a leaf and not contained in any other subtree. If it has more than one child, any leaf
form one of the children is not contained in the subtree of the other children. So the only thing
we have left to prove, that there exists a gondola that stops at node 0. If 0 has only one child,
then it is a leaf, and hence there even exists a gondola starting there. Thus, we can assume that
0 has at least two children say one of them is D. Applying the claim for D combined with out
observation implies that there exists a gondola stopping at 0.
Finally, we have proven that the algorithms is correct, assuming the claim holds so this is all

we have left to prove.

13/13

	Evaporation
	(10 Points)
	(20 Points)
	(30 Points)
	(40 points)

	Number Hunt
	Analyze Stofls Table (10 points)
	Optimal Algorithm (90 points)

	Binnabike
	(5 Points)
	(35 Points)
	(60 Points)

	Venice
	Example
	Many gondolas
	Tight limit on gondolas

