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Instructions
• You have 5h and 30min to solve the tasks. Make sure you reserve enough time for submitting.

We recommend reserving 30min for scanning and upload, and if you finish early you may
continue working on the tasks and resubmit again later.

• The contest is “Open Book”: you may use the internet, books, old solutions etc.
• If you have questions during the round, ask us via email (info@soi.ch). We won’t give out

any hints though, so try to formulate clear yes/no questions.
• Your solution must be fully hand-written (pen and paper).
• Write legibly.
• Your solution must be self-contained: you can’t reference any known algorithms, blog

articles or papers except for the SOI wiki, sections “First Round” and “Second Round”.
• You should upload one PDF per task to the grader, with good enough resolution so we can

read everything. A few megabytes per task should suffice (the hard limit is 100 MiB).
• We only look at the last submission of each task, so you may resubmit later on.
• You can see a preview of your submission if you press "Detail", to ensure you uploaded the

right file.
• In case you have technical problems either with your scanner or the grader, you can prove

to us that you finished in time by handing in a low-resolution photo. Send it to Johannes
Kapfhammer over email, Discord or Signal/WhatsApp (contact information redacted for
this public task archive).

Grading
The solutions will be graded according to similar criteria as the first theoretical round. The most
important criteria are correctness and asymptotic running time. The quality of the description
and the arguments asserting the correctness will also be taken into account.

You can always refer to some content of the SOI Wiki or 2H. You don’t need to explain why e.g.
Dĳkstra works, but you should argue why and how it can be applied. In the case of Dĳkstra, you
should clearly state on which graph you run it, and note that the edge weights are not negative.
The algorithm should be described in enough detail that it is easy to convert the description

into a program. Also write down which data structures you would choose. Usually it is best to
just write a short pseudocode.
To describe an algorithm, you should structure your solutions according to the following

guideline:

1. Describe the idea for an algorithm that solves the problem.
2. Give pseudocode or explain how one would implement the algorithm.
3. Argue about the correctness of the approach.
4. Indicate asymptotic running time and memory usage.

If some part of your solution can be used for multiple subtasks, it suffices to write it down only
once and refer to it from other parts. Note, however, that a general algorithm might be able to
solve the previous subtasks, but not necessarily optimally.
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Lasercut
Mouse Binna recently received a laser cutter. With it, she would like to cut a =×< bar of chocolate
into = · < squares of size 1 × 1 each. The laser cutter works as follows: Mouse Binna can line up
one or more pieces of chocolate in the plane. She may move them around and/or rotate them.
Then the laser cutter moves along a straight line, cutting all pieces it moves over. (In other words,
in a single step, you can do a straight-line cut on arbitrarily many pieces.) What’s the minimum
number of cuts Mouse Binna needs to do?

Formally, you are given a = × < rectangle and must find the minimum number of opera-
tions to split it into 1 × 1 squares. In a single operation, you may first orient each piece, this
includes moving and/or rotating each piece. Then you choose a line and every piece that
intersects this line is split into two pieces along the line. This concludes a single operation.

Splitting a 1 × 6 Bar with 3 Cuts

• The dashed line shows where we will place the cut.
• From each row to the next the pieces are rearranged.

The total number of cuts for this 1 × 6 bar was 3, and it can be shown that this is optimal.
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Subtask 1: A 3 × 5 bar (10 points)

Give the minimal number of cuts Mouse Binna needs to cut this 3 × 5 bar of chocolate into 15
single pieces.

Subtask 2: A long thin bar (35 points)

For a 1 ×< bar of chocolate, give an algorithm that computes the minimal number of cuts. Prove
its correctness and state its asymptotic running time and space usage.

Subtask 3: General case (55 points)
Give an algorithm that computes the minimal number of cuts for an = ·< bar of chocolate. Prove
its correctness and state its asymptotic running time and space usage.
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Plane seating
There is a plane with ' · � seats, organised in ' rows and � columns. Each seat can be assigned
unique coordinates (A, 2) (where 1 ≤ A ≤ ', 1 ≤ 2 ≤ �). We say that two seats are neighbors if
they are directly adjacent in the same row, or if one is in front of the other. Formally, two seats
(A8 , 28) and (A 9 , 2 9) are neighbors if and only if |A8 − A 9 | + |28 − 2 9 | = 1.

Stofl’s big family, consisting of ' ·�mice, numbered conveniently 1 through ' ·�, are organising
a trip to Singapore. Since this is a big family, some mice might not be on good terms with each
other.
In particular, you are given two functions: likes(m)which returns the set of mice mouse <

likes (1 ≤ < ≤ ' · �) and num(m) which returns the size of likes(m) (i.e. num(m) = | likes(m)|).
This relation is guaranteed to be symmetric: if mouse 0 likes mouse 1 then mouse 1 also likes
mouse 0, i.e. 0 ∈ likes(b)⇐⇒ 1 ∈ likes(a). All other pairs dislike each other.

You want to help Stofl make the trip a success. Help Stofl find a seating arrangement, such that
the following conditions are satisfied:

• Each mouse sits in their own seat.
• All pairs of mice who like each other are seated as neighbors.
• No pair of mice who dislike each other are seated as neighbors.

If there are multiple seating arrangements that fulfill the above criteria, you may find any of
them. Call the function assign(m, r, c) to assign mouse < to seat (A, 2). If there are no such
arrangements, report that there are none by calling the function impossible() (this will ignore
any previous assign(m, r, c) calls).

You can assume for the analysis that num, assign and impossible run in constant time and in
constant space and that likes has a runtime and space usage of O(num(m)).

Subtask 1: Concrete example (20 points)
Let ' = 3 and � = 3 and let the # = 12 pairs of mice be as follows:

{1, 2}, {5, 6}, {9, 7}, {8, 9}, {1, 3}, {3, 4}, {8, 1}, {4, 5}, {6, 2}, {4, 2}, {6, 7}, {9, 2}.

Can mice be seated in the plane in accordance with the conditions above?

Subtask 2: A plane with a single seat in a row (30 points)
In this subtask, assume that � = 1 (i.e. there is only one seat in a row) but there are no further
constraints on ' (i.e. we have an arbitrary number of rows in the plane).

Subtask 3: General case (50 points)
In this subtask, there are no constraints on ' or �.
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Mug stacking
Mouse Stofl has 2= mugs in his cupboard. The mugs are arranged from left to right on a line and
are numbered from 1 to 2=. As mouse Stofl is running out of space horizontally, he would like to
stack these mugs.

Some of the mugs have a perfectly flat base, while others curve towards the center. Flat mugs
can’t be stacked on other mugs, as the resulting stack would be very unstable. Curved mugs on
the other hand can be stacked on other mugs just fine. In the picture below, the two stacks on the
left are allowed, while the two stacks on the right are not.

Mouse Stofl wants to stack these mugs into = stacks of height 2. To stack mug 8 onto mug 9,
mouse Stofl needs |8 − 9 | seconds. Find the minimal time Stofl needs to stack his mugs.

For the analysis you can assume to have a function type(i), which returns the type of mug 8
(1 ≤ 8 ≤ 2=) in constant time and space.

Subtask 1: Solve an example (10 points)
For the following initial arrangement of mugs, how can Stofl stack the cups in the minimal time
possible? You do not have to prove your answer.

Subtask 2: Perfect pairing (40 points)
Exactly half of the cups have a flat base. Develop an algorithm that finds the minimal time. Prove
its correctness and state its asymptotic running time and space usage.

Subtask 3: Stofl’s cupboard (50 points)
Stofl’s cupboard does not necessarily satisfy the additional constraint of the previous subtask.
However, it is guaranteed that at least = cups have a curved base. Develop an algorithm that
finds the minimal time for the general case. Prove its correctness and state its asymptotic running
time and space usage.
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Astrophysics
Dr. Mouse Binna is a famous experimental astrophysicist. Her general research focus is applied
general relativity. The details of her latest research cannot be understood by anyone but the most
advanced researchers specializing in her field, but it has been popularized as follows: The goal
of Mouse Binna is to find black holes and white holes.
Intuitively, a black hole is very attractive: starting from any point in the galaxy that is not in a

black hole, there exists a geodesic terminating in the black hole, but it is impossible to exit the
black hole and reach any point outside of it.1

The dual of a black hole is a white hole. Intuitively, a white hole is very repulsive: there exists a
geodesic originating in the white hole traveling to any point in the galaxy not in a white hole, but
there is no way to enter the white hole once you have left it.2

It is popularly understood that Mouse Binna is considering a set of = ≥ 2 space-time locations
within a galaxy where there is at most one black hole and at most one white hole.

Using a complicated experimental-theoretical method (involving science), Mouse Binna can
determine for two locations 0 and 1 whether it is easily possible to reach location 1 when starting
in location 0.3

Important note: Mouse Binna’s notion of simple reachability is based on astrophysics above any
level that can be popularly understood. A location is simply reachable from itself, but that is the
only rule on which you can rely. In particular, if you know simple reachability for some pairs of
locations, this does not tell you anything about simple reachability for any other pair of distinct
locations! (In particular, this relation is not transitive: it is possible that we can simply reach 1
from 0 as well as 2 from 1, but not 2 from 0.)
Inspired by her method, Mouse Binna has invented the notions of generalized black holes

and white holes (but she endearingly refers to them as simple black holes and white holes
nonetheless):

A black hole is a set of locations that is simply reachable from anywhere, but cannot be simply
exited. I.e.:

• If G is inside the black hole, then for any location H, G is simply reachable from H.
• If G is inside the black hole, but H is not inside the black hole, then H is not simply reachable

from G.

A white hole is a set of locations from which we can simply reach anywhere else, but that we
cannot simply enter. I.e.:

• If G is inside the white hole, then for any location H, H is simply reachable from G.
• If G is inside the white hole, but H is not inside the white hole, then G is not simply reachable

from H.

As checking for simple reachability is expensive, Mouse Binna would like to do it the smallest
possible number of times.

Subtask 1: A very small galaxy (10 points)
To test her method, Mouse Binna already has exhaustively probed reachability for a small set of
= = 7 locations within a small galaxy.

1As Mouse Binna likes to point out, this is because once you have entered the black hole, the outside is a point in time
rather than a location in space; exiting the black hole would amount to travel backwards in time.

2Mouse Binna says that this is because the interior of the white hole is in the past. For example, the big bang is a white
hole.

3Though Mouse Binna prefers to say: There is an admissible geodesic with low enough proper time starting in 0 and
ending in 1 within a Riemannian space-time manifold with an appropriate metric tensor, although for most of our
purposes, chicken are spherical, we are ignoring the evolution of the system according to the Einstein field equations,
etc. [more details omitted in the interest of brevity].
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There is an arrow from location 0 to location 1 if and only if location 1 is simply reachable from
location 0.
There is an arrow 0 → 1 if and only if location 1 is simply reachable from location 0; as well

as an arrow in both directions 0 ↔ 1 if and only if 0 is simply reachable from 1 and 1 is simply
reachable from 0.

0

1
2

3

4

5
6

Find the set of all locations that are inside the black hole and the set of all locations that are
inside the white hole.

Subtask 2: A small black hole (15 points)
In this subtask, there is no white hole. Furthermore, it is guaranteed that there is a black hole
and exactly one of the given locations is inside the black hole. I.e., your algorithm does not have
to check whether there is a black hole or whether it has really size 1. It can assume that the black
hole exists and that it consists of precisely one location.
You can ask Mouse Binna to measure (unidirectional) reachability for locations 0 to 1. I.e.,

Mouse Binna will tell you whether location 1 is simply reachable from location 0. You should
find the single location that is inside the black hole using a small number of measurements.
Note that in this task, we ignore lower-order terms, but the leading constant matters. For

example, a solution that uses 4 · =2 + 3 · = measurements is equivalent to a solution that uses
4 · =2 + 2 · = measurements, but a solution that uses 3 · = + 100 measurements is strictly better
than a solution that uses 4 · = measurements. (The two quadratic solutions are both worse than
any linear-time solution, no matter the leading constant.)
Note that in this task (as for other tasks), we expect you to show that your algorithms are

correct and efficient, i.e., you have to argue why they will always find the correct sets of locations
and you also have to determine some upper bound on the number of measurements that they
use.

On the other hand, you do not have to prove that your solutions are optimal, but solutions that
use fewer measurements will score more points.

Subtask 3: Small black hole and white hole (20 points)
In this subtask, it is guaranteed that there exist both a black hole and a white hole. Furthermore,
exactly one of the given locations is inside the black hole and exactly one other location is inside
the white hole.

I.e., your algorithm does not have to check whether there is a black hole or a white hole and it
does not have to check whether they really have size 1. It can assume that both types of holes
exist and that each of them consists of precisely one location.
Find both the location of the black hole and the location of the white hole, with a small total

number of measurements.
Again, you do not have to prove optimality, but try to make the leading term as small as

possible.
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Subtask 4: A large black hole (25 points)
In this subtask, there is no white hole. It is guaranteed that there exists a black hole and at least
one of the given locations is inside the black hole. Find the set of all locations that are inside the
black hole, with a small number of measurements.

Like before, you do not have to prove optimality, but try to make the leading term as small as
possible.

Subtask 5: Large black hole and white hole (30 points)
In this subtask, it is guaranteed that there exist both a black hole and a white hole. At least one of
the given locations is inside the black hole and at least one of the given locations is inside the
white hole. The black hole and the white hole do not have any locations in common. Find the set
of locations that are inside the black hole, as well as the set of locations that are inside the white
hole. Use a small total number of measurements.

You still do not have to prove optimality, but try to make the leading term as small as possible.
Solutions that use 4 · = + $(1)measurements can score up to 18 points for this subtask.
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