
Second Round Theoretical

Solutions

Swiss Olympiad in Informatics

March 4–7, 2022

Round 2 Theoretical, 2022
Task consensus

Consensus
Task Idea Joël Huber
Task Preparation Johannes Kapfhammer
Description English Joël Huber
Description German Jan Schär
Description French Florian Gatignon
Solution Johannes Kapfhammer

Subtask 1: Solve the example (10 Points)
a) With : = 3 the largest possible consensus is 6 and can be reached as follows.

• [1, 6, 1, 8, 0, 3, 3]. Invite 0, 1, 3 and agree to 6.

• [6, 6, 1, 6, 0, 3, 3]. Invite 0, 1, 2 and agree to 6.

• [6, 6, 6, 6, 0, 3, 3]. Invite 0, 1, 4 and agree to 6.

• [6, 6, 6, 6, 6, 3, 3]. Invite 0, 1, 5 and agree to 6.

• [6, 6, 6, 6, 6, 6, 3]. Invite 0, 1, 6 and agree to 6.

• [6, 6, 6, 6, 6, 6, 6]. Everyone is of the opinion that the camp should have length 6.

b) With : = 2 the largest possible consensus is 8 and can be reached as follows.

• [1, 6, 1, 8, 0, 3, 3]. Invite 0, 3 and agree to 8.

• [8, 6, 1, 8, 0, 3, 3]. Invite 0, 1 and agree to 8.

• [8, 8, 1, 8, 0, 3, 3]. Invite 0, 2 and agree to 8.

• [8, 8, 8, 8, 0, 3, 3]. Invite 0, 4 and agree to 8.

• [8, 8, 8, 8, 8, 3, 3]. Invite 0, 5 and agree to 8.

• [8, 8, 8, 8, 8, 8, 3]. Invite 0, 6 and agree to 8.

• [8, 8, 8, 8, 8, 8, 8]. Everyone is of the opinion that the camp should have length 8.

(That organizer who thinks the camp should have length 0 though. . .)

Subtask 2: Design an Algorithm (90 Points)
There are two steps to the full solution. First, we realize that the answer is always the b(:−1)/2c-th
largest number. Then, we develop an effient algorithm to compute that.

The answer is always the b(k − 1)/2c-th largest number
To clarify the notation, b·c means rounding down to the next integer. In this case b(: − 1)/2c
stands for the largest integer that is smaller than or equal to (: − 1)/2.
Let - be the b(: − 1)/2c-th highest number.

As with most proofs there are two parts:

(a) - is a lower bound (the answer is ≥ -) and

(b) - is an upper bound (the answer is ≤ -).

2/16

Round 2 Theoretical, 2022
Task consensus

Lower Bound We can prove the this by construction.

• Take the : highest numbers and make an agreement towards -. This is possible because
b(: − 1)/2c + 1 numbers will be ≥ -, and b(: − 1)/2c + 1 = b(: + 1)/2c ≥ :/2; as well as
: − b(: − 1)/2c − 1 = (: − 1) − b(: − 1)/2c = d(: − 1)/2e ≥ :/2.
Another, possibly clearer, way is to make a case distinction between even : and odd :; that
way one can avoid dealing with the rounded expressions.

• As long as there is not a consensus, take : − 1 numbers which are - and one that is not -
and set them all to - (for this to work we need : ≥ 2).

After this process ends all the numbers have value -.

Upper Bound We still need to argue that there is no better solution. Let’s do a proof by
contradiction. Suppose, for example, that the best answer is ., where . > -. Let’s label all
values ≥ . as red and all values < . as green. By definition of . there are initially < b(: − 1)/2c
red numbers. Since . is a consensus during some mediation the number of red values must go
from < b(: − 1)/2c to ≥ b(: − 1)/2c. Let’s look at the first mediation where this happens. The
agreement was made on a red number / where / ≥ .. However as there were only b(: − 1)/2c
red numbers before, The majority of values is < . therefore such proposal would be rejected –
contradiction. Therefore no answer can be > -, or in other words, all possible answers must be
≤ -.

Both statements together imply that the answer must be exactly -.

Computing the i-th largest number
Now that we know what we want, we can look at different ways to compute it efficiently. Let
8 = b(: − 1)/2c = O(:) for the following analysis.

The following solutions solve the subtasks in O(=) time and O(1) space:
a) For : = 3, this means finding the second largest number. This can be done in a single

iteration through the array maintaining the largest and second largest value.

b) For two different options, counter the number of 8’s and the number of 9’s. If the number
of 9’s is larger or equal to 8 + 1, then the answer is 9, otherwise it’s 8.

The following solutions work for the general task:

O(= log =) time/O(=) space Sorting the input values and looking at the 8-th largest number. Sorting
the array can be done in O(= log =) time. Since the input is only given in read-only memory and
sorting needs to write to the array, this uses O(=)memory.

O(= log :) time/O(:) space Only keeping the 8 largest numbers. We don’t need to remember all
values, we only need to store the 8 largest ones. We could do this by keeping a priority_queue
of size :. When iterating through the array we push the new value and pop the smallest one.
The size of the priority queue never exceeds :, therefore push and pop run in O(log :) and the
memory is in O(:).

O(=) time/O(=) space Using the median of medians algorithm. The function nth_element of the
C++ standard library can compute the :-th element of a vector in O(=) time. The Median of
medians algorithm would be a possible implementation. As the list needs to be rearranged to
compute it, this requires O(=)memory.

O(=) time/O(:) space Using Median of medians to keep the 8 largest numbers. We can reduce the
memory by combining the median of medians idea with the priority queue idea: Take the first 8
values. Then repeatedly read 8 more values, compute the median and only keep the 8 largest

3/16

https://en.cppreference.com/w/cpp/algorithm/nth_element
https://en.wikipedia.org/wiki/Median_of_medians
https://en.wikipedia.org/wiki/Median_of_medians

Round 2 Theoretical, 2022
Task consensus

values. That way we only need to store 28 = O(:) values, and compute the median for d=/8e
chunks each taking O(28) time – which means the total running time is O(=).

4/16

Round 2 Theoretical, 2022
Task conference

Scientific Conference
Task Idea Johannes Kapfhammer, Ema Skottova
Task Preparation Petr Mitrichev
Description English Petr Mitrichev
Description German Jan Schär
Description French Alberts Reisons
Solution Petr Mitrichev

Subtask 1: Solve an example (10 points)
In this example, there is exactly one set of scientists that Binna could invite: A, D and E. They
have not published any papers together, so the popularity of each scientist at this conference
would be 0, and 1 + 0 < 3

2 .

Subtask 2: Very few papers (20 points)
We will describe the solution for this subtask as part of the solution for the next subtask.

Subtask 3: Few papers (30 points)
Idea
There are multiple approaches that can be used for these subtasks. Let us describe the most
direct one.

First, let us try to invite all mouse scientists to the conference. If the conditions from the problem
statement are satisfied, then we have found the solution. If they are not, then there exists a mouse
scientist with popularity of at least =2 − 1.

Let us remove this mouse scientist and all papers they have published from consideration. We
now have a set of =′ = = − 1 mouse scientists, and the number of papers they have published
have been reduced by at least =2 − 1: <′ ≤ < − (=2 − 1).
If the remaining set of mouse scientists satisfies the conditions from the problem statement, then
we have found the solution. If not, then there exists a mouse scientist with popularity of at least
=′
2 − 1 = =−1

2 − 1.

Now we will remove this mouse scientist and their papers from consideration as well. We now
have a set of =′′ = = − 2 mouse scientists, and the number of papers they have published is
<′′ ≤ < − (=2 − 1) − (=−1

2 − 1).
We can continue this process until we either get a good set of mouse scientists to invite, or remove
all scientists from consideration. However, if we have removed all scientists from consideration,
then the number of remaining papers, which is 0, satisfies the inequality 0 ≤ < −∑=

8=1(82 − 1) =
< + = + 1

2
∑=
8=1 8 = < + = −

=(=−1)
4 , so < ≥ =(=−1)

4 − = = =(=−5)
4 .

However, in these two subtasks we know that < < (=−5)2
4 ≤ =(=−5)

4 , which contradicts the
inequality above. This means that in these two subtasks the approach with removing the mouse
scientists from consideration one by one will always find a valid set of mouse scientists for the
conference before removing all mouse scientists.

5/16

Round 2 Theoretical, 2022
Task conference

Implementation
In order to implement this algorithm, we need to repeatedly do the following: find the vertex
with the highest degree in an undirected graph, and then either stop or remove this vertex with
all adjacent edges from the graph.

This can be done by putting all (degree, vertex) pairs into a balanced binary search tree (such
as std::set), which allows to find the biggest element, and whenever we remove a vertex we
update the degrees of the adjacent vertices and remove and re-add the corresponding pairs to
the tree. Since the tree does each operation in $(log =), and we do at most < + = operations, the
total running time is $((< + =) log =), and we use $(< + =)memory (to keep the graph from the
input).

We can get rid of the log = factor by choosing a more appropriate data structure that would allow
to find the vertex with the highest degree repeatedly. For example, we can put all vertices into a
vector of vectors, where the outer vector is indexed by the degree of the vertex. Every time we
decrease the degree of a vertex because of removing some edge, we will push it to the vector
corresponding to its new degree. Ideally we would also remove it from the vector corresponding
to its old degree, but removing elements from vectors is slow, so we will keep it there, and instead
check if the degree matches when traversing that vector.

This will cause some vertices to appear in more than one vector by degree, but the total number
of pushes will still be $(< + =) (because we push = vertices initially and then at most < times
when an edge is removed), so the running time and memory usage will be $(< + =).

Pseudocode
n, g = read_graph_as_adjacency_lists()
deg = [g[i].size() for i in 0 .. n-1]
by_deg = [[], [], ..., []]
for i in 0 .. n-1:
by_deg[deg[i]].push(i)

removed = [0, 0, ..., 0]
k = n
for i in n-1 .. 0:
for a in by_deg[i]:
if removed[a] == 1 or deg[a] != i:
continue

if 2 * (i + 1) < k:
return [i for i in 0.. n-1 if removed[i] == 0]

removed[a] = 1
k -= 1
for b in g[a]:
if removed[b] == 0:
deg[b] -= 1
by_deg[deg[b]].push(b)

Subtask 4: Many papers (40 points)
Idea
The approach described above does not work when we have more edges, so we need a different
approach for this subtask. The example from the first subtask hints at the following

Lemma 1: If there is a valid set of mouse scientists to be invited to the conference, there always
exists a valid set of exactly 3 mouse scientists to be invited to the conference.

6/16

Round 2 Theoretical, 2022
Task conference

Proof: Consider a valid set (of mouse scientists to be invited to the conference, |(| = :. Take
any scientist 0 ∈ (. Since the popularity of 0 is less than :

2 − 1, the set) ⊂ (of those scientists
in (who have not published papers together with 0 has more than :

2 elements. Now take any
scientist 1 ∈), and by the same argument the set * ⊂) of those scientists in) who have not
published papers together with 1 has more than 0 elements. Finally, take any scientist 2 ∈ * . We
can see that the scientists 0, 1 and 2 have published no papers together, and therefore can form a
valid conference.

Therefore we just need to find an anti-triangle in the given graph: three vertices with no edges
between them.

Implementation
We can just check all possible options for an anti-triangle with three nested loops. In this subtask
< = Ω(=2), therefore we can represent the graph as the adjacency matrix without increasing the
asymptotical time or memory usage, and then we can check the existence of every edge in $(1),
making the entire solution run in $(=3), using $(=2)memory.

There are algorithms to find an anti-triangle faster, for example https://en.wikipedia.org/
wiki/Triangle-free_graph explains how to find a triangle in $(=2.373) using fast matrix
multiplication, and we can simply apply it to the complement of the graph to find an anti-triangle,
but this was not required to get full score in this subtask.

Pseudocode
n, a = read_graph_as_adjacency_matrix()
for i in 0 .. n-1:
for j in i+1 .. n-1:
for k in j+1 .. n-1:
if a[i][j] == 0 and a[i][k] == 0 and a[j][k] == 0:
return {i, j, k}

return "No solution"

Previous subtasks revisited
The same approach of just looking for anti-triangles can also be used in subtasks 2 and 3. However,
our $(=3) implementation is much slower than $(< + =) that we achieved with a dedicated
solution for those subtasks.

However, it is also possible to find an anti-triangle in $(< + =) when < < (=−5)2
4 . One approach

inspired by the proof of https://en.wikipedia.org/wiki/Tur%C3%A1n%27s_theorem is: take
any two vertices which are not connected. Either there is an anti-triangle formed by these two
vertices and some other vertex, or the number of edges adjacent to them is at least = − 2. Remove
those two vertices together with all adjacent edges from the graph and repeat.

Similar to the other solution for subtasks 2 and 3 described above, either this algorithm will
find an anti-triangle at some point, or the number < of edges in our graph has to be at least
(=−2)+(=−4)+· · · ≥ 1

2 (((=−2)+(=−4)+. . .)+((=−3)+(=−5)+. . .)) = 1
2
∑=−2
8=1 8 =

(=−1)(=−2)
4 .

The last condition contradicts< < (=−5)2
4 , therefore this algorithmwill always find an anti-triangle

in these subtasks. We can implement it to run in $(< + =) if we represent the graph using
adjacency lists and have a separate boolean array that marks the vertices that were removed.
Since we process each vertex only once, we can simply iterate over its adjacency list to find the
number of edges that are leading from it to non-removed vertices.

There are also other approaches to find an anti-triangle that work for graphs with few edges
(they are called sparse graphs). Some of them work only for subtask 2, but not for subtask 3, and

7/16

https://en.wikipedia.org/wiki/Triangle-free_graph
https://en.wikipedia.org/wiki/Triangle-free_graph
https://en.wikipedia.org/wiki/Tur%C3%A1n%27s_theorem

Round 2 Theoretical, 2022
Task conference

this was the reason for the existence of subtask 2.

8/16

Round 2 Theoretical, 2022
Task onewayportals

Oneway Portals
Task Idea Jan Schär, Joël Huber
Task Preparation Joël Huber
Description English Joël Huber
Description German Joël Huber
Description French Mathieu Zufferey
Solution Joël Huber, Daniel Rutschmann

This was without a doubt the hardest problem of the problemset. Also note that this solution
writeup is very technical and formal, you don’t need to be that technical in writing your solution
for 2T, as time is limited there.

Let’s start with some general observations first. Let 5 (E) again be the distance the length of a
shortest path from E to the root (as in the problem statement), and let 3(D, E) be the length of a
shortest path from D to E (or∞ if no such path exists). Also, let’s call one way of adding portals a
“configuration”.

Note that minimizing
∑
E∈(5 (E)
|(| is the same as minimizing

∑
E∈(5 (E), thus instead of the average,

we can focus on the sum.

Observation 1: In an optimal configuration, each portal used by a shortest path will connect a
vertex with the root.

Proof: Suppose in an optimal configuration, there is a portal that doesn’t go to the root. Let
this portal go from D to E. Let’s replace this portal with a portal connecting D and the root and
thus get a new configuration. Now look at a vertex F where in the old configuration, there was a
shortest path using the portal from D to E. Then in the new configuration, there is a new shortest
path whose length is 5 (E) shorter than the path in the original graph. Thus for any vertex F
with a shortest path passing through this portal in the old configuration, 5 (F) has been reduced.
Now, we only need to show that there is no vertex F, such that 5 (F) has increased. Indeed,
this is rather easy to proof: Note that the only thing that we changed was the portal between D
and E. As said, vertices F with a path from D to E have their 5 (F) reduced, vertices F where
no shortest path passed through this portal don’t have their 5 increased as these shortest paths
haven’t changed.

These two observations give us a clear rules on what we can do. All the portals we are going
to use connect vertices to the root. If there are more portals than marked vertices, we can just
ignore the additional ones, as then it would be optimal to just connect each marked vertex to the
root.

Subtask 1: Solve the example (10 points)
In this example, we need to add a portal from 6 to 0. For the second portal, we can either connect
3 to 0 or 5 to 0. Either way will lead to a sum of 6, meaning that the answer for this case is
6
4 =

3
2 = 1.5.

Subtask 2: Expensive Portals, Poor Government (20 points)
In this case, we can only add one portal. In order to do this, let’s first calculate the value of∑
E∈(5 (E) without a portal. Then, let’s calculate for each vertex E how much we would save if we

added a portal from E to the root. Let 2E be the number of inhabited planets in the subtree of E.
Then adding a portal at position E would save us 2E · (3E − 1), where 3E is the depth of vertex E.
This is beacuse each vertex in the subtree of E can now take the portals and thus save 3E − 1 edges

9/16

Round 2 Theoretical, 2022
Task onewayportals

(taking the portal takes 1 edge). Thus we could calculate this value for each vertex E and take the
vertex maximizing it (minimize the sum↔maximize what we save by adding a single portal)
We can calculate 2E and 3E for each vertex with a simple DFS. See the pseudocode below:

1 initial_sum = 0
2 max_save = 0
3

4 def dfs(curr, depth):
5 # Saves the number of inhabited planets in the subtree of curr
6 subtree_count = 0
7

8 if inhabited[curr]:
9 # Add the distance from curr to the root
10 # to the initial sum
11 initial_sum += depth
12

13 # Add the current vertex to the current subtree count
14 subtree_count += 1
15

16 # Recurse
17 for child in children[curr]:
18 subtree_count += dfs(child, depth + 1)
19

20 # Calculate how much can be saved by adding a portal here
21 max_save = max(max_save, (depth - 1) * subtree_count)
22

23 return subtree_count
24

25 def solve():
26 inhabited_count = dfs(0, 0)
27 return (initial_sum - max_save) / inhabited_count

DFS in a tree takes O(=) time and O(=) space.

Subtask 3: The Alliance (70 Points)
If we continue experimenting, it gets very clear that the solution is going to be some sort of dp.
Thus, in classical dp fashion, let’s first try to come up with any dp that works and then optimize
it later.

In order for the dp recurrence to become more manageable, let’s suppose that any edge incident
to the root takes no time to cross. Note that this will also mean that newly added portals are
free to cross. Note that if we know calculate

∑
E∈(5 (E), we will end up with the solution of the

original problem minus (|(| − 1). This will simplify the dp formula a lot.

Consider the following dp: dp[E][8][9] is the minimal cost of the vertices in the subtree of E if we
add 8 edges there and the next ancestor of E with an added edge is 9 edges above E. This dp has
O(=2:) states. Now let’s look at the transitions:

dp[E][8][3] = min

{
dp[E][8 − 1][0], inhabited[E] · 3 +

(
min

80+···+82E−1

2E−1∑
;=0

dp[DE,;][8;][3 + 1]
)}

where 2E is the number of children of vertex E, and DE,0 , . . . , DE,28−1 are the children of E. Let’s
disect this transition. There are two possibilities for dp[E][8][3]: Either we add an edge to E, or

10/16

Round 2 Theoretical, 2022
Task onewayportals

we don’t. If we do, we have one edge less available in the subtree, but there’s an edge connected
to E. Thus we need to take the value of dp[E][8 − 1][0]. If we don’t add an edge there, the next
added edge above E will be 3 edges above E. Thus if E is inhabited, we need to add 3 to account
for vertex E. Now, we need to combine the values of the children. For each child, the next added
edge above it has distance 3+ 1 to them (as the distance from E is 3). Finally, we need to distribute
the 8 additional edges to the subtrees of the children of 8 and take the best assignment of these
edges. This is where the min80+···+82E−1 comes from.

Doing everything except for min
80+···+82E−1

{
2E−1∑
;=0

dp[DE,;][8;][3 + 1])
}
is simple. Let’s focus on calcu-

lating this for the moment. Let’s look at dp[E][8] as a dp where the values are vectors, where
we can easily merge two of these vectors in O(=). We can calculate dp[E][8]more efficiently by
calculating it for all 8 at the same time: Let

dp9[E][8] = min
80+···+8 9

((dp[DE,0][80] + · · · + dp[DE,9][8 9])

Then the recurrence is simpler:

dp9[E][8] = min
;∈{0,...,8}

{
merge(dp9−1[E][;], dp[DE,9−1][8 − ;])

}
Doing this and calculating the bounds naively gives a solution that runs in O(=2:2) time and
uses O(=2:)memory. However, we can optimize this even further.

Let 5E,8 = dp[E][8][G]. Then, there are two things we can optimize: The number of merges we
need to do, and the time needed to merge these functions. In our previous solution, the number
of merges would be estimated as O(=:2) and the time for a merge as O(=).

Recalculating the number of merges
Let’s recalculate the number of merges. We will see that this procedure will actually do a lot less
merges than we calculated. For simplicity, suppose that the tree is a binary tree (the bound we
are calculating for the binary tree will still work for a normal tree, as we can transform a normal
tree with = vertices to a binary tree with less than 2= vertices). Let BE be the size of the subtree of
vertex E. Then the at vertex E, the second dimension of the dp has size min(:, BE), or in other
words, we have min(:, BE) of these 5E,8 . To combine the two subtrees of the vertices 0 and 1, we
will now need min(:, B0) ·min(:, B1) time.

Calculating a stronger bound
Suppose we need to store BE elements instead of min(:, BE), and thus combining costs B0 · B1 . This
will obviously be slower than what we’re doing.

Claim: This strategy will merge some amount in O(=2) times.

Proof: Whenwe combine the two subtrees andpay B0 ·B1 in time, look at it as (1+· · ·+1)·(1+· · ·+1).
As there are B0 ones in the first subtree, assign to each of these ones a node. Do the same thing
with the second subtree. If we expand, each combination of a one on the left side and a one on
the right side will contribute one to the final sum of B0 · B1 . Thus the number of operations we do
in one combination is precisely the number of pairings of a vertex from subtree 0 and a vertex of
subtree 1. Now consider any pair of two vertices in the tree, D and E. We will add the pairing of
these two verties exactly once to the final cost, namely at the lca of D and E. Thus the sum of the
costs is the number of pairings of vertices in the tree, which is in O(=2).
Remark: Youcan readabout this trick inmoredetail here: https://usaco.guide/adv/comb-sub.

11/16

https://usaco.guide/adv/comb-sub

Round 2 Theoretical, 2022
Task onewayportals

Calculating an even stronger bound
When we calculated the sum before, we ignored the min part, so clearly, the real bound must be
a bit better.

Claim: This strategy will merge some amount in O(=:) times.

Proof: Now, when pairing, we are limited to at most : vertices. Consider the preorder of the
vertices. Now when merging, if B0 > :, only consider the last : vertices from the first subtree
with respect to the preorder, and if B1 > :, only consider the first : vertices from the preorder.
Now a pair of vertices is only a valid pairing if their distance in the preorder is at most :. So
for each vertex, there are only 2: possible other vertices for a pairing, thus we will have O(=:)
pairings, and thus we will have that many merges.

Optimizing the time needed for a merge
In this subsection, let conf(E, 8, G) be the optimal configuration of the added edges in the subtree
at E if we have 8 edges to add and the next edge above E is at distance G (like the definition of
dp).

Lemma 1: Let IE be the number of inhabited planets in the subtree of E. Then 5E,8(1) − 5E,8(0) ≤
IE .

Proof: Consider conf(E, 8, 0) for the case of G = 1. Now, the cost of each inhabited vertex will be
at most one bigger than its cost in conf(E, 8, 0), as if their path doesn’t go to E, its cost stays the
same, and otherwise, it increases at most by 1. Thus 5E,8(1) ≤ 5E,8(0) + IE .
Lemma 2: 5E,8(G + 1) − 5E,8(G) ≥ 0.

Proof: Consider conf(E, 8, G + 1) for the case 5E,8(G). Clearly, the cost of no vertex increases, as
for the paths that don’t go through E nothing changes. The paths through E only get shorter.
Thus 5E,8(G + 1) ≥ 5E,8(G).

Lemma 3: 5E,8 is concave.

Proof: Note that while calculating the formula above, there are only two things we do when
merging 5E,8s. Let’s prove by induction on ℎE + 8, where ℎE is the distance from E to the furtest
leaf in the subtree of E. When we do calculate 5E,8 , there are only two things we’re doing:

1. 5E,8(G) ← min(5E,8(G), 6(G)), where 6(G) is also concave (when we either merge it with
other 5D,9 , which is concave by the induction hypothesis, or when we do dp[E][8][G] ←
min(dp[E][8 − 1][0], dp[E][8 − 1][G]), a constant is also concave).

2. 5E,8(G)+ = G (when we do account for E begin inhabited)

In the first case, we need to prove that the minimum of two concave functions is still concave.
Let 0(G) = min(1(G), 2(G)), where 1(G) and 2(G) are concave. Consider the smallest G such
that 0(G) − 0(G − 1) < 0(G + 1) − 0(G). Clearly, as both functions are concave, not all three
of 0(G + 1), 0(G) and 0(G − 1) can come from the same function. Without loss of generality,
1(G) = 0(G). Suppose 0(G − 1) = 2(G − 1). Then clearly 1(G) − 1(G − 1) ≤ 0(G) − 0(G − 1), and thus
0(G + 1) − 0(G) ≤ 1(G + 1) − 1(G) ≤ 1(G) − 1(G − 1) ≤ 0(G) − 0(G − 1), a contradiction. Thus suppose
0(G − 1) = 1(G − 1). Then 0(G + 1) − 0(G) ≤ 1(G + 1) − 1(G) ≤ 1(G) − 1(G − 1) ≤ 0(G) − 0(G − 1).
Another contradiction. Thus 0 is concave. So the first case holds.

For the second case, Note that adding G to 5 (G) will just add 1 to every 5 (G + 1) − 5 (G). Thus
5 (G) − 5 (G − 1) ≥ 5 (G + 1) − 5 (G) ⇔ 5 (G) − 5 (G − 1) + 1 ≥ 5 (G + 1) − 5 (G).

Lemma 4: 5E,8 is a piecewise linear function, consisting of at most IE linear segments.

12/16

Round 2 Theoretical, 2022
Task onewayportals

Proof: By lemma 1, the first slope of the function is at most IE . As the function is concave, we
get IE ≥ · · · ≥ 5 (G + 1) − 5 (G) ≥ · · · ≥ 0. Thus first there is some segment with slope at most IE ,
then some segment with a smaller slope, then again, until we arrive at slope 0.

Thus instead of the whole function, we could only save the points where the slope changes.

Lemma 5: Let A be the root. Then 5A,:−1(0) − 5A,:(0) ≤ 2 · =
2

:2 , where 2 is a constant. (Note that
5A,:(0) is the total cost of an optimal configuration with : portals).

Proof: Consider conf(A, :, 0) and look at the vertices with an additional edge. For each of these
vertices, mark it if there are at most 2=

: vertices with a shortest path going through that edge. Note
that if there are less than :

2 marked vertices, then the total number of vertices whose shortest path
takes a portal, is bigger than 2=

: (: − :
2) = =, which is a contradiction. Thus the number of marked

vertices is at least :2 . For each marked vertex, consider it and its 2=
: ancestors. If for any vertex the

root is among is 2=
: ancestors, then we can remove the additional edge from this vertex while

increasing the cost by at most 4=2

:2 . Otherwise, we are considering (2=: + 1) :2 > = vertices. Thus by
the pigenhole principle, one vertex E must be considered at least twice by two marked vertices D
and F. Removing the portals at D and F will increase the cost by at most 8=2

:2 . Either way, we get
a configuration for : − 1 with which costs at most 2 =2

:2 more, thus 5A,:−1(0) − 5A,:(0) ≤ 2 =
2

:2 .

Lemma 6: Let takeE,8(G) be true if there is an optimal configuration where we add 8 edges in
the subtree of E and the next added edge above E has distance G to E. Then there is a constant 2
such that 5E,8(G) − 5E,8(0) ≥ 2 =

2

:2 implies that takeE,8(G) is false.

Proof: Let 2 be the constant from Lemma 5. Then consider an optimal configuration where
takeE,8(G) is true and 5E,8(G) − 5E,8(0) ≥ 2 =

2

:2 . Then 5A,:(0) be the cost of this configuration. Now,
place an additional portal at E. We get a new configuration with : + 1 portals, which costs more
than 2 =2

:2 less. Thus, 5A,:(0) − 5A,:+1(0) > 2 =
2

:2 > 2 =2

(:+1)2 , which is a direct contradiction to Lemma
5.

Lemma 7: We only need to store an amount in O(=:) of linear segments for 5=,8(G).

Proof: The amount needed is at most
√

22 =: + 1 = <, where 2 is the constant from Lemma
6. Consider the first < linear segments. Let G be the start of the next segment. Then
5E,8(G) = 5E,8(0) + ;000 + · · · + ;<−10<−1, where the ;s are the lengths of the segments and the 0s
are the slopes of the segments. As ;0 , . . . , ;<−1 > 0 and 0<−1 > 0<−1 > · · · > 00 ≥ 0, we get

that 5E,8(G) ≥ 5E,8(0) + 0 + 1 + · · · + (< − 1) = 5E,8(0) + <(<−1)
2 = 5E,8(0) +

(
√

22 =: +1)
√

22 =:
2 > 2 =

2

:2 . Thus
5E,8(G) − 5E,8(0) ≥ 2 =

2

:2 . By Lemma 6, these values are irrelevant, as takeE,8(G′) for G′ ≥ G will never
be true.

Putting it together
We have = vertices, for each of the vertices, we need to store : piecewise linear functions, with at
most 2 · =: different segments for each of these functions. Thus this needs 2 · = · : · =: ∈ O(=2)
memory.

Additionally, we do O(=:)merges. We can perform each merge in time linear in the number of
segments in the functions we are merging. Thus one merge takes O(=:), so the total runtime is
again in O(=2).

13/16

Round 2 Theoretical, 2022
Task particledetector

Particle detector
Task Idea Bibin Muttappillil
Task Preparation Jan Schär
Description English Jan Schär
Description German Christopher Burckhardt
Description French Florian Gatignon
Solution Jan Schär

Subtask 1: A toy detector (15 points)
There can be at most 7 broken sensors. Only one such configuration exists; it is shown here, with
broken sensors shaded:

0
0

1

1

2

0

3

0

4 0

5

1
6

1

7

0

8
0

Subtask 2: All sensors report 1 (10 points)
The answer is # – all sensors can be broken.

This is easy to see, since in this case, every sensor is broken and both its neighbors are broken too,
which means that every sensor reports 1.

Subtask 3: All sensors report 0 (15 points)
If # is divisible by 3, the answer is 2#

3 , otherwise 0.

Each sensor reports 0, which means that either the sensor is good and both neighbors are good,
or the sensor is good and both neighbors are bad, or the sensor is bad and exactly one of the
neighbors is bad.

Let’s do a case distinction:

N is divisible by 3 It is possible that 2#
3 sensors are broken. The broken sensors are 0, 1, 3, 4,

6, 7, . . . , # − 3, # − 2. This works, because every broken sensor has one broken neighbor, and
every good sensor has two broken neighbors, which means that all sensors report 0.

If more than 2#
3 sensors are broken, then there must be at least one sensor which is broken and

has two broken neighbors, and then that sensor would report 1.

Thus, 2#
3 is the maximum number of broken sensors.

14/16

Round 2 Theoretical, 2022
Task particledetector

N is not divisible by 3 There can’t be any broken sensors. Let’s assume towards a contradiction
that there exists at least one broken sensor. Then one of the neighbors of this sensor must be
broken too, otherwise it would report 1. Let’s rotate the detector such that these two adjacent
sensors are numbered 0 and 1. As sensor 1 is broken, it must have exactly one broken neighbor,
hence sensor 2 must be good. Because sensor 2 is good and its first neighbor is broken, its other
neighbor 3 must be broken too. We can continue this reasoning, and find that all sensors 8
with 8 mod 3 = 0 and 8 mod 3 = 1 must be broken, while all sensors with 8 mod 3 = 2 must be
good.

We know that # is not divisible by 3, i.e. # mod 3 ≠ 0, and hence (# − 1) mod 3 ≠ 2. This means
that sensor # − 1 is broken.

So sensor 0 is broken and both its neighbors, 1 and # − 1 are broken, which means that sensor 0
reports 1 – we have reached a contradiction.

Subtask 4: General case (60 points)
Themain insight is that once the brokenness of two neighboring sensors is known, the brokenness
of all other sensors can be inferred. If we pick two neighboring sensors and try out each of
the four possible combinations of their brokenness, and then infer the rest, we have covered all
possible configurations.

The algorithm
Try out each configuration for sensors 0 and 1: good/good, good/broken, broken/good, and
broken/broken. For each of these, iteratively infer the brokenness of sensors 2, 3, . . . , # − 1. If
sensor 8−1 reports 1 and none or both of sensors 8−2 and 8−1 are broken, then sensor 8 is broken.
If sensor 8 − 1 reports 0 and exactly one of sensors 8 − 2 and 8 − 1 is broken, then sensor 8 is broken
too. In all other cases, sensor 8 is good. At the end, we check if the reports from sensors # − 1
and 0 are as expected, otherwise this configuration for sensors 0 and 1 is not possible.

For each of the possible configurations, we count the number of broken sensors, and then output
the maximum of those. If no possible configuration was found, output -1.

15/16

Round 2 Theoretical, 2022
Task particledetector

Here is the solution in pseudo-code:

Algorithm: Solution for the general case
1 def Report(0, 1, 2):
2 ⊲ From the brokenness of three adjacent sensors, compute the report of the middle one
3 if (1 = 0 and 0 ≠ 2) or (1 = 1 and 0 = 2) then
4 return 1
5 else
6 return 0

7 answer← −1
8 foreach (10 , 11) ← {(0, 0), (0, 1), (1, 0), (1, 1)} do
9 count← 10 + 11

10 C0 , C1 ← 10 , 11
11 for 8 ← 2 to # − 1 do
12 ⊲ Infer the brokenness of sensor 8
13 if Report(C0 , C1 , 0) = A8−1 then
14 C2 ← 0
15 else
16 C2 ← 1
17 count← count + C2
18 C0 , C1 ← C1 , C2

19 if Report(C0 , C1 , 10) = A#−1 and Report(C1 , 10 , 11) = A0 then
20 answer← max(answer, count)

21 return answer

Correctness
Let’s take any possible configuration of broken sensors. Look at the brokenness of sensors 0 and
1 in this configuration. One of the four iterations of the solution has the same configuration for
these two sensors. All the other sensors will be inferred with the same brokenness as well, since
there is only one way to infer their brokenness.

Thus, the solution exhaustively checks all possible configurations. This means that in particular,
it checks the configuration with the maximum number of broken sensors, as long as a valid
configuration exists.

Since reports of sensors 1, 2, . . . , # − 2 are used for the inferrence, they must necessarily be
consistent, and we check if the reports from sensors 0 and # − 1 are consistent. This means that
the solution skips all invalid configurations.

Thus, the solution is correct.

Time and memory
The algorithm iterates over the input 4 times, so its running time is O(=).
It is not necessary to store all the inferred brokenness states in an array, it suffices to keep the
last two values and a count of broken sensors, so the algorithm can be implemented with O(1)
memory usage.

16/16

	Consensus
	Solve the example (10 Points)
	Design an Algorithm (90 Points)

	Scientific Conference
	Solve an example (10 points)
	Very few papers (20 points)
	Few papers (30 points)
	Idea
	Implementation
	Pseudocode

	Many papers (40 points)
	Idea
	Implementation
	Pseudocode
	Previous subtasks revisited

	Oneway Portals
	Solve the example (10 points)
	Expensive Portals, Poor Government (20 points)
	The Alliance (70 Points)
	Recalculating the number of merges
	Optimizing the time needed for a merge
	Putting it together

	Particle detector
	A toy detector (15 points)
	All sensors report 1 (10 points)
	All sensors report 0 (15 points)
	General case (60 points)

