
Subset sum and Knapsack problem

More Dynamic Programming Problems

Martin Chikov

November 4, 2018

Swiss Olympiad in Informatics

Subset Sum Problem

Subset Sum

Problem: Given is a list a0, a1, . . . , an−1 of non-negative integers

and an integer S .

Find out if it is possible to choose some of these numbers so that

their sum is equal to S

1

Examples of Subset Sum

List A = [5; 10; 20; 50; 100; 200; 500] and S = 390:

Answer: No.

List A = [5; 10; 20; 50; 100; 200; 500] and S = 875:

Answer: Yes.

2

Examples of Subset Sum

List A = [5; 10; 20; 50; 100; 200; 500] and S = 390:

Answer: No.

List A = [5; 10; 20; 50; 100; 200; 500] and S = 875:

Answer: Yes.

2

Examples of Subset Sum

List A = [5; 10; 20; 50; 100; 200; 500] and S = 390:

Answer: No.

List A = [5; 10; 20; 50; 100; 200; 500] and S = 875:

Answer: Yes.

2

Examples of Subset Sum

List A = [5; 10; 20; 50; 100; 200; 500] and S = 390:

Answer: No.

List A = [5; 10; 20; 50; 100; 200; 500] and S = 875:

Answer: Yes.

2

Brute-force solution

Idea: Check all sums we can achieve

Let say we have a set with i elements. In order to find if we can

make sum k using some of these elements, there are 2 cases we

need to check:

1. Can we make the sum k using the first i − 1 elements? (is k

one of the subset sums of the first i − 1 elements)

2. Can we make the sum k − ai using the first i − 1 elements?

(can we make k by adding the value of ai to each of the

subset sums of the first i − 1 elements)

3

Brute-force solution

Idea: Check all sums we can achieve

Let say we have a set with i elements. In order to find if we can

make sum k using some of these elements, there are 2 cases we

need to check:

1. Can we make the sum k using the first i − 1 elements? (is k

one of the subset sums of the first i − 1 elements)

2. Can we make the sum k − ai using the first i − 1 elements?

(can we make k by adding the value of ai to each of the

subset sums of the first i − 1 elements)

3

Brute-force solution

Idea: Check all sums we can achieve

Let say we have a set with i elements. In order to find if we can

make sum k using some of these elements, there are 2 cases we

need to check:

1. Can we make the sum k using the first i − 1 elements? (is k

one of the subset sums of the first i − 1 elements)

2. Can we make the sum k − ai using the first i − 1 elements?

(can we make k by adding the value of ai to each of the

subset sums of the first i − 1 elements)

3

Brute-force solution - example

Example: A = [3; 7; 10]

The sets of the subset sums are:

Using the first 3 elements:

{(), (3), (7), (3+7=10), (10), (3+10=13), (7+10=17),

(3+7+10=20)}
Using the first 2 elements:

{(), (3), (7), (3+7=10)}
Using the first 1 element:

{(), (3)}
Using the first 0 elements:

{()}

Implementation: Recursion

4

Brute-force solution - Recursion

vector<int> a;

bool Subsetsum (int i, int k) {

if (k == 0)

return true;

if (i == 0 && k != 0)

return false;

if (a[i-1] > k)

return Subsetsum(i-1, k);

return Subsetsum(i-1, k) ||

Subsetsum(i-1, k-a[i-1]);

}

bool answer = Subsetsum(a.size(),sum);

5

Brute-force solution - Run time analysis

The total amount of subsets we have to check is equal to 2n.

For smaller values of n this can work relatively fast.

However for bigger values (n = 100):

2100 > Edge of the observable universe

How can we do better?

6

DP’s four steps

1. Define sub problems.

2. Find a general recurrence formula to solve a sub problem

using the solution to other sub problems.

3. Find base case(s).

4. Which is the relevant sub problem?

7

DP’s four steps - Step 1

1.Define sub problems:

S(i , k) - using the first i elements can we make sum k?

8

DP’s four steps - Step 2

2.General formula:

Let’s say we know all solutions S(i , k) for the first i-1 elements.

We consider a new element: ai

For any sum k we have 2 cases:

• We don’t add the element to the sum

S(i , k) = S(i − 1, k)

• We add the element to the sum

S(i , k) = S(i − 1, k − a[i])

Therefore our general formula is:

S(i , k) = S(i − 1, k) ‖ S(i − 1, k − a[i])

9

DP’s four steps - Step 2

2.General formula:

Let’s say we know all solutions S(i , k) for the first i-1 elements.

We consider a new element: ai

For any sum k we have 2 cases:

• We don’t add the element to the sum

S(i , k) = S(i − 1, k)

• We add the element to the sum

S(i , k) = S(i − 1, k − a[i])

Therefore our general formula is:

S(i , k) = S(i − 1, k) ‖ S(i − 1, k − a[i])

9

DP’s four steps - Step 2

2.General formula:

Let’s say we know all solutions S(i , k) for the first i-1 elements.

We consider a new element: ai

For any sum k we have 2 cases:

• We don’t add the element to the sum

S(i , k) = S(i − 1, k)

• We add the element to the sum

S(i , k) = S(i − 1, k − a[i])

Therefore our general formula is:

S(i , k) = S(i − 1, k) ‖ S(i − 1, k − a[i])

9

DP’s four steps - Step 2

2.General formula:

Let’s say we know all solutions S(i , k) for the first i-1 elements.

We consider a new element: ai

For any sum k we have 2 cases:

• We don’t add the element to the sum

S(i , k) = S(i − 1, k)

• We add the element to the sum

S(i , k) = S(i − 1, k − a[i])

Therefore our general formula is:

S(i , k) = S(i − 1, k) ‖ S(i − 1, k − a[i])

9

DP’s four steps - Step 3

3.Find base case(s).

S(0, 0) = true - using 0 elements we can make sum = 0

S(0, x) = false (for x > 0) - using 0 elements we can’t make any

sum > 0

10

DP’s four steps - Step 4

4.Relevant sub problem:

S(n, sum) - using n elements can we make sum?

11

Subset Sum - Dynamic Programming

void Subsetsum_dp() {

vector<vector<bool> > dp(n+1, vector<int>(s+1, 0));

dp[0][0]=1;

for(int i=1; i<=n; i++) {

for(int k=0; k<=s; k++) {

if(k-v[i-1]<0)

dp[i][k] = dp[i-1][k];

else

dp[i][k]= dp[i-1][k] || dp[i-1][k-v[i-1]];

}

}

if(dp[n][s]==1) cout << "Yes\n";

else cout << "No\n";

}
12

Dynamic programming solution - Run time analysis

For each element we have to calculate whether we can achieve sum

k or not. Therefore we have:

Running time of O(nS)

(where n is the number of elements and S is the sum we want to

check)

13

Knapsack Problem

Knapsack problem

Problem: Given a set of list a0, a1, . . . , an−1 of items each with a

weight w0,w1, . . . ,wn−1 and a value v0, v1, . . . , vn−1.

Choose which items to take such that the total weight is less than

or equal to C and the total value of the items is as large as

possible.

14

Examples of Knapsack Problem

• Weight W = [5; 4; 6; 3]

Value V = [10; 40; 30; 50]

Knapsack capacity = 10

Answer = 90 (we take a1 and a3 with total weight = 7)

• Weight W = [3; 5; 5; 6]

Value V = [10; 60; 60; 100]

Knapsack capacity = 10

Answer = 120 (we take a1 and a2 with total weight = 10)

15

Examples of Knapsack Problem

• Weight W = [5; 4; 6; 3]

Value V = [10; 40; 30; 50]

Knapsack capacity = 10

Answer = 90 (we take a1 and a3 with total weight = 7)

• Weight W = [3; 5; 5; 6]

Value V = [10; 60; 60; 100]

Knapsack capacity = 10

Answer = 120 (we take a1 and a2 with total weight = 10)

15

Examples of Knapsack Problem

• Weight W = [5; 4; 6; 3]

Value V = [10; 40; 30; 50]

Knapsack capacity = 10

Answer = 90 (we take a1 and a3 with total weight = 7)

• Weight W = [3; 5; 5; 6]

Value V = [10; 60; 60; 100]

Knapsack capacity = 10

Answer = 120 (we take a1 and a2 with total weight = 10)

15

Examples of Knapsack Problem

• Weight W = [5; 4; 6; 3]

Value V = [10; 40; 30; 50]

Knapsack capacity = 10

Answer = 90 (we take a1 and a3 with total weight = 7)

• Weight W = [3; 5; 5; 6]

Value V = [10; 60; 60; 100]

Knapsack capacity = 10

Answer = 120 (we take a1 and a2 with total weight = 10)

15

Brute-force solution

Brute-force Idea: Try all of the possibilities.

Running time: O(2n) - too slow.

Let’s try thinking of a DP solution!

16

DP’s four steps - Step 1

1.Define sub problems:

S(i , k) - what is the maximum total value we can achieve using the

first i items, with the chosen items total weight less or equal to k?

17

DP’s four steps - Step 2

2.General formula:

Let’s assume we know all solutions S(i , k) for the first i − 1 items.

We consider a new item with value vi and weight wi

For any total weight k we have 2 cases:

• We don’t take the item or if wi > k

S(i , k) = S(i − 1, k)

• We take the item and wi ≤ k

S(i , k) = S((i − 1, k − wi) + vi)

Therefore our general formula is:

S(i , k) = max(S(i − 1, k), S((i − 1, k − wi) + vi)

18

DP’s four steps - Step 2

2.General formula:

Let’s assume we know all solutions S(i , k) for the first i − 1 items.

We consider a new item with value vi and weight wi

For any total weight k we have 2 cases:

• We don’t take the item or if wi > k

S(i , k) = S(i − 1, k)

• We take the item and wi ≤ k

S(i , k) = S((i − 1, k − wi) + vi)

Therefore our general formula is:

S(i , k) = max(S(i − 1, k), S((i − 1, k − wi) + vi)

18

DP’s four steps - Step 2

2.General formula:

Let’s assume we know all solutions S(i , k) for the first i − 1 items.

We consider a new item with value vi and weight wi

For any total weight k we have 2 cases:

• We don’t take the item or if wi > k

S(i , k) = S(i − 1, k)

• We take the item and wi ≤ k

S(i , k) = S((i − 1, k − wi) + vi)

Therefore our general formula is:

S(i , k) = max(S(i − 1, k), S((i − 1, k − wi) + vi)

18

DP’s four steps - Step 2

2.General formula:

Let’s assume we know all solutions S(i , k) for the first i − 1 items.

We consider a new item with value vi and weight wi

For any total weight k we have 2 cases:

• We don’t take the item or if wi > k

S(i , k) = S(i − 1, k)

• We take the item and wi ≤ k

S(i , k) = S((i − 1, k − wi) + vi)

Therefore our general formula is:

S(i , k) = max(S(i − 1, k), S((i − 1, k − wi) + vi)

18

DP’s four steps - Step 3

3.Find base case(s).

S(0, k) = 0 - using 0 items the best value we can have is 0

S(i , 0) = 0 - using i items the best value with weight 0 is 0

19

DP’s four steps - Step 4

4.Relevant sub problem:

S(n,C) - using n items what is the maximum total value with

weight less or equal to C?

20

Knapsack - Dynamic Programming

int Knapsack_dp() {

vector<vector<int> > dp(n+1, vector<int>(c+1, 0));

for (int i=1; i<=n; i++) {

for (int k=1; k<=c; k++) {

if (w[i-1] <= k)

dp[i][k] = max(v[i-1] + dp[i-1][k-w[i-1]],

dp[i-1][k]);

else

dp[i][k] = dp[i-1][k];

}

}

return dp[n][c];

}

21

Dynamic programming solution - Run time analysis

For each element we have to calculate the best value with weight

at most k. Therefore we have:

Running time of O(nC)

(where n is the number of elements and C is the knapsack

capacity)

22

Final remarks

• Dynamic programming is tricky at first, because of the big

overall picture

• Look at the small problems and base cases - solve them

• Use the solution of these small problems to solve it for a

slightly bigger one

• Using these small blocks construct your solution

Most importantly - practice! The more experience you have

the easier and faster you’ll see the concepts!

23

Final remarks

• Dynamic programming is tricky at first, because of the big

overall picture

• Look at the small problems and base cases - solve them

• Use the solution of these small problems to solve it for a

slightly bigger one

• Using these small blocks construct your solution

Most importantly - practice! The more experience you have

the easier and faster you’ll see the concepts!

23

Final remarks

• Dynamic programming is tricky at first, because of the big

overall picture

• Look at the small problems and base cases - solve them

• Use the solution of these small problems to solve it for a

slightly bigger one

• Using these small blocks construct your solution

Most importantly - practice! The more experience you have

the easier and faster you’ll see the concepts!

23

Final remarks

• Dynamic programming is tricky at first, because of the big

overall picture

• Look at the small problems and base cases - solve them

• Use the solution of these small problems to solve it for a

slightly bigger one

• Using these small blocks construct your solution

Most importantly - practice! The more experience you have

the easier and faster you’ll see the concepts!

23

Final remarks

• Dynamic programming is tricky at first, because of the big

overall picture

• Look at the small problems and base cases - solve them

• Use the solution of these small problems to solve it for a

slightly bigger one

• Using these small blocks construct your solution

Most importantly - practice! The more experience you have

the easier and faster you’ll see the concepts!

23

	Subset Sum Problem
	Knapsack Problem

