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Call by value and by reference
Reference variables
Variable initialization

Modifying in functions

1 void tripple(int x){
2 x*=3;
3 cout << "trippled to " << x << "\n";
4 }
5 signed main(){
6 int a = 5;
7 tripple(a);
8 cout << "a: " << a << "\n";
9 }

Output:
trippled to 15
a: 5

a is copied into x , so modifying x does not change a.
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1 void tripple(int &x){
2 x*=3;
3 cout << "trippled to " << x << "\n";
4 }
5 signed main(){
6 int a = 5;
7 tripple(a);
8 cout << "a: " << a << "\n";
9 }

Output:
trippled to 15
a: 15

a is a reference pointing to x , so modifying x does change a.
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Performance

1 vector<int> append_pm(vector<int> v, int val){
2 v.push_back(val);
3 v.push_back(-val);
4 return v;
5 }
6 signed main(){
7 vector<int> nums;
8 for(int i=1;i<100000;++i){
9 nums = append_mp(nums, i);

10 }
11 }

nums is copied to v every time. This is slow (≈ 4 seconds).
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1 void append_pm(vector<int> &v, int val){
2 v.push_back(val);
3 v.push_back(-val);
4 }
5 signed main(){
6 vector<int> nums;
7 for(int i=1;i<100000;++i){
8 append_mp(nums, i);
9 }

10 }

v points to nums, no copy created. This is fast (< 0.01 seconds).
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Call by value

Use call by value if you want a copy that can be changed
independently.

1 int next_odd_square(int x){
2 if(x%2 == 0) ++x;
3 return x*x;
4 }
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Call by reference

Use call by reference if you want to modify the original inside the
function.

1 void swap_ints(int &a, int &b){
2 int tmp = a;
3 a = b;
4 b = tmp;
5 }

(Of course, you could just use std::swap(a, b) in this example.)
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Call by const reference

Use call by const reference if you don’t modify the variable inside
the function.

1 int square(int const&x){
2 return x*x;
3 }

This is the most common case and “const” helps you catch bugs.
1 void add_x_to_y(int const&x, int &y){
2 // error: assignment of read-only reference ’x’
3 x+=y;
4 // correct would be y+=x;
5 }

Note that y is passed by reference.
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Local reference variables

You can also declare local variables as references.
1 vector<vector<int> > table;
2 void process(int const&x, int const&y){
3 int &val = table[x][y];
4 val = 3 * val + 1;
5 while(val % 2 == 0){
6 val/=2;
7 }
8 }

This avoids writing table[x][y] every time.

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Dangling references

References should not outlife the variable they point to.
1 int& sum(int const x, int const&y){
2 int ret = x + y;
3 // A reference to ret is returned,
4 return ret;
5 // but ret leaves the scope here.
6 }
7 signed main(){
8 int &val = sum(2, 3);
9 // val points to ret, but ret no longer exists!

10 }

This is undefined behaviour.
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Default initialization

Non-class types and arrays get initialized to indeterminate values.
1 signed main(){
2 int x; // x has indeterminate value
3 cout << x << "\n" // undefined behaviour
4 array<int, 3> v; // indeterminate values
5 cout << v[1] << "\n" // undefined behaviour
6 }

Class types get initialized by calling the default constructor.
1 signed main(){
2 vector<int> v; // well defined, v is an empty vector
3 }
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Zero initialization

You can intialize to 0 with brace initialzation.
1 signed main(){
2 int x{}; // x is zero
3 int y = 0; // y is zero too
4 cout << x << " " << y << "\n" // prints 0 0
5 array<int, 3> v{}; // v is {0, 0, 0}
6 cout << v[1] << "\n" // prints 0
7 }

This also works with class types.
1 signed main(){
2 vector<int> v{}; // v is an empty vector
3 }
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Initialization: Things to avoid

There’s no need to call the constructor explicitly.
1 signed main(){
2 vector<vector<int> > v = vector<vector<int> >();
3 // just use vector<vector<int> > v{};
4 }

You can’t use () for zero initialization, as that declares a function.
1 signed main(){
2 int a();
3 // a is a function that takes no arguments
4 // and returns an int
5 }
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Characters

Use char to store single characters.
1 char a = ’a’;
2 char zero = ’0’;
3 // characters convert to integers
4 // see man ascii
5 char b = a + 1;
6 char nine = zero + 9;
7 cout << a << b << " " << zero << nine;

Note that char promotes to int in operations.
1 char a = ’a’;
2 cout << a+1; // prints 98 (=ascii value of ’b’)
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Use string to store single characters. This is more convenient
than using vector<char>.

1 string s = "abc";
2 string t = "123";
3 string st = s + t; // concatenate
4 s += t;
5 cout << s << " " << t << " " << st << "\n";
6 // abc123 123 abc123
7 cin >> t; // read from stdin
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String operations

1 string s = "abcdef"
2 string cd = s.substr(2, 2); // (pos, length)
3 int pos = s.find("de") // 3
4 string aaaa(4, ’a’); // (length, character)
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Suppose we want to store 2-dimensional points with an id. Using
multiple vectors is quite cumbersome.

1 vector<int> x(n), y(n), id(n);
2 for(int i=0;i<n;++i){
3 cin >> x[i] >> y[i] >> id[i];
4 }
5 // How do we sort them by x-coordinate?
6 // sort(x.begin(), x.end())
7 // -> y and id don’t match anymore.
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Struct

A struct can bundle values together.

1 struct Point{
2 int x, y, id;
3 };
4 // list initialization {x, y, id}
5 Point origin{0, 0, -1};
6 vector<Point> points;
7 for(Point &e:points){
8 cin >> e.x >> e.y >> e.id;
9 }

10 // Now we can sort them
11 sort(points.begin(), points.end(), [](Point const&a,

Point const&b){return a.x < b.x;});↪→
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Operator overloading
1 struct Point{
2 int x, y, id;
3 // compare by x-coordinate
4 bool operator<(Point const&o)const{
5 return x < o.x;
6 }
7 bool operator==(Point const&o)const{
8 return x == o.x;
9 }

10 // add two points
11 Point operator+(Point const&o)const{
12 return Point{x+o.x, y+o.y, -1};
13 }
14 };
15 Point x{1, 0, 1}, y{0, 1, 2};
16 Point z = x + y;
17 if(y < z) x = y;
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Pairs

A pair has two values: “first” and “second”.

1 pair<int, char> p(42, ’x’);
2 cout << p.first << " " << p.second; // 42 x
3 pair<int, char> q = make_pair(42, ’x’);
4 p.second = ’n’;
5 if (p < q) cout << "Yes"; // lexicographic comparison
6 if(p == q) cout << "Nope";
7 int a;
8 char c;
9 tie(a, c) = p; // unpack pair

10 vector<pair<int, int> > v; // container of pairs
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Tuple
Nested pairs can get messy.

1 pair<pair<int, int>, pair<pair<bool, int>, char> > p;
2 p.second.first.second = 3;

A tuple can store any fixed number of variables.

1 tuple<int, int, bool, int, char> p;
2 get<3>(p) = 3;
3 cout << get<0>(p);
4 get<4>(p) = ’x’;

You can also use an array if all types are equal.
1 array<int, 5> a;
2 a[2] = 1;

This can quickly get messy. (What was get<3>(p) again?). Use a
struct instead.
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