
C++ semantics
Strings and characters

Struct and tuple

Advanced C++

Daniel Rutschmann

Swiss Olympiad in Informatics

October 11, 2018

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Modifying in functions

1 void tripple(int x){
2 x*=3;
3 cout << "trippled to " << x << "\n";
4 }
5 signed main(){
6 int a = 5;
7 tripple(a);
8 cout << "a: " << a << "\n";
9 }

Output:
trippled to 15
a: 5

a is copied into x , so modifying x does not change a.

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Modifying in functions

1 void tripple(int x){
2 x*=3;
3 cout << "trippled to " << x << "\n";
4 }
5 signed main(){
6 int a = 5;
7 tripple(a);
8 cout << "a: " << a << "\n";
9 }

Output:
trippled to 15
a: 5

a is copied into x , so modifying x does not change a.
Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Modifying in functions

1 void tripple(int &x){
2 x*=3;
3 cout << "trippled to " << x << "\n";
4 }
5 signed main(){
6 int a = 5;
7 tripple(a);
8 cout << "a: " << a << "\n";
9 }

Output:
trippled to 15
a: 15

a is a reference pointing to x , so modifying x does change a.

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Modifying in functions

1 void tripple(int &x){
2 x*=3;
3 cout << "trippled to " << x << "\n";
4 }
5 signed main(){
6 int a = 5;
7 tripple(a);
8 cout << "a: " << a << "\n";
9 }

Output:
trippled to 15
a: 15

a is a reference pointing to x , so modifying x does change a.
Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Performance

1 vector<int> append_pm(vector<int> v, int val){
2 v.push_back(val);
3 v.push_back(-val);
4 return v;
5 }
6 signed main(){
7 vector<int> nums;
8 for(int i=1;i<100000;++i){
9 nums = append_mp(nums, i);

10 }
11 }

nums is copied to v every time. This is slow (≈ 4 seconds).

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Performance

1 void append_pm(vector<int> &v, int val){
2 v.push_back(val);
3 v.push_back(-val);
4 }
5 signed main(){
6 vector<int> nums;
7 for(int i=1;i<100000;++i){
8 append_mp(nums, i);
9 }

10 }

v points to nums, no copy created. This is fast (< 0.01 seconds).

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Call by value

Use call by value if you want a copy that can be changed
independently.

1 int next_odd_square(int x){
2 if(x%2 == 0) ++x;
3 return x*x;
4 }

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Call by reference

Use call by reference if you want to modify the original inside the
function.

1 void swap_ints(int &a, int &b){
2 int tmp = a;
3 a = b;
4 b = tmp;
5 }

(Of course, you could just use std::swap(a, b) in this example.)

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Call by const reference

Use call by const reference if you don’t modify the variable inside
the function.

1 int square(int const&x){
2 return x*x;
3 }

This is the most common case and “const” helps you catch bugs.
1 void add_x_to_y(int const&x, int &y){
2 // error: assignment of read-only reference ’x’
3 x+=y;
4 // correct would be y+=x;
5 }

Note that y is passed by reference.

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Local reference variables

You can also declare local variables as references.
1 vector<vector<int> > table;
2 void process(int const&x, int const&y){
3 int &val = table[x][y];
4 val = 3 * val + 1;
5 while(val % 2 == 0){
6 val/=2;
7 }
8 }

This avoids writing table[x][y] every time.

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Dangling references

References should not outlife the variable they point to.
1 int& sum(int const x, int const&y){
2 int ret = x + y;
3 // A reference to ret is returned,
4 return ret;
5 // but ret leaves the scope here.
6 }
7 signed main(){
8 int &val = sum(2, 3);
9 // val points to ret, but ret no longer exists!

10 }

This is undefined behaviour.

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Default initialization

Non-class types and arrays get initialized to indeterminate values.
1 signed main(){
2 int x; // x has indeterminate value
3 cout << x << "\n" // undefined behaviour
4 array<int, 3> v; // indeterminate values
5 cout << v[1] << "\n" // undefined behaviour
6 }

Class types get initialized by calling the default constructor.
1 signed main(){
2 vector<int> v; // well defined, v is an empty vector
3 }

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Zero initialization

You can intialize to 0 with brace initialzation.
1 signed main(){
2 int x{}; // x is zero
3 int y = 0; // y is zero too
4 cout << x << " " << y << "\n" // prints 0 0
5 array<int, 3> v{}; // v is {0, 0, 0}
6 cout << v[1] << "\n" // prints 0
7 }

This also works with class types.
1 signed main(){
2 vector<int> v{}; // v is an empty vector
3 }

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Call by value and by reference
Reference variables
Variable initialization

Initialization: Things to avoid

There’s no need to call the constructor explicitly.
1 signed main(){
2 vector<vector<int> > v = vector<vector<int> >();
3 // just use vector<vector<int> > v{};
4 }

You can’t use () for zero initialization, as that declares a function.
1 signed main(){
2 int a();
3 // a is a function that takes no arguments
4 // and returns an int
5 }

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Characters

Use char to store single characters.
1 char a = ’a’;
2 char zero = ’0’;
3 // characters convert to integers
4 // see man ascii
5 char b = a + 1;
6 char nine = zero + 9;
7 cout << a << b << " " << zero << nine;

Note that char promotes to int in operations.
1 char a = ’a’;
2 cout << a+1; // prints 98 (=ascii value of ’b’)

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Strings

Use string to store single characters. This is more convenient
than using vector<char>.

1 string s = "abc";
2 string t = "123";
3 string st = s + t; // concatenate
4 s += t;
5 cout << s << " " << t << " " << st << "\n";
6 // abc123 123 abc123
7 cin >> t; // read from stdin

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

String operations

1 string s = "abcdef"
2 string cd = s.substr(2, 2); // (pos, length)
3 int pos = s.find("de") // 3
4 string aaaa(4, ’a’); // (length, character)

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Struct

Suppose we want to store 2-dimensional points with an id. Using
multiple vectors is quite cumbersome.

1 vector<int> x(n), y(n), id(n);
2 for(int i=0;i<n;++i){
3 cin >> x[i] >> y[i] >> id[i];
4 }
5 // How do we sort them by x-coordinate?
6 // sort(x.begin(), x.end())
7 // -> y and id don’t match anymore.

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Struct

A struct can bundle values together.

1 struct Point{
2 int x, y, id;
3 };
4 // list initialization {x, y, id}
5 Point origin{0, 0, -1};
6 vector<Point> points;
7 for(Point &e:points){
8 cin >> e.x >> e.y >> e.id;
9 }

10 // Now we can sort them
11 sort(points.begin(), points.end(), [](Point const&a,

Point const&b){return a.x < b.x;});↪→

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Operator overloading
1 struct Point{
2 int x, y, id;
3 // compare by x-coordinate
4 bool operator<(Point const&o)const{
5 return x < o.x;
6 }
7 bool operator==(Point const&o)const{
8 return x == o.x;
9 }

10 // add two points
11 Point operator+(Point const&o)const{
12 return Point{x+o.x, y+o.y, -1};
13 }
14 };
15 Point x{1, 0, 1}, y{0, 1, 2};
16 Point z = x + y;
17 if(y < z) x = y;

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Pairs

A pair has two values: “first” and “second”.

1 pair<int, char> p(42, ’x’);
2 cout << p.first << " " << p.second; // 42 x
3 pair<int, char> q = make_pair(42, ’x’);
4 p.second = ’n’;
5 if (p < q) cout << "Yes"; // lexicographic comparison
6 if(p == q) cout << "Nope";
7 int a;
8 char c;
9 tie(a, c) = p; // unpack pair

10 vector<pair<int, int> > v; // container of pairs

Daniel Rutschmann Advanced C++



C++ semantics
Strings and characters

Struct and tuple

Tuple
Nested pairs can get messy.

1 pair<pair<int, int>, pair<pair<bool, int>, char> > p;
2 p.second.first.second = 3;

A tuple can store any fixed number of variables.

1 tuple<int, int, bool, int, char> p;
2 get<3>(p) = 3;
3 cout << get<0>(p);
4 get<4>(p) = ’x’;

You can also use an array if all types are equal.
1 array<int, 5> a;
2 a[2] = 1;

This can quickly get messy. (What was get<3>(p) again?). Use a
struct instead.

Daniel Rutschmann Advanced C++


	C++ semantics
	Call by value and by reference
	Reference variables
	Variable initialization

	Strings and characters
	Struct and tuple

