Advanced C+-+

Daniel Rutschmann

Swiss Olympiad in Informatics

October 11, 2018

Daniel Rutschmann Advanced C++



C++ semantics Call by value and by reference
Reference variables
Variable initialization

Modifying in functions

1 void tripple(int x){

2 x*=3;

3 cout << "trippled to " << x << "\n';
.

5 signed main(){

6 int a = 5;

7 tripple(a);

8 cout << "a: " << a << "\n";

o }

Daniel Rutschmann Advanced C++



C++ semantics Call by value and by reference
Reference variables
Variable initialization

Modifying in functions

1 void tripple(int x){

2 x*=3;
3 cout << "trippled to " << x << "\n';
.
5 signed main(){
6 int a = 5;
7 tripple(a);
8 cout << "a: " << a << "\n";
o }
Output:
trippled to 15
a: 5

a is copied into x, so modifying x does not change a.

Daniel Rutschmann Advanced C++



C++ semantics Call by value and by reference
Reference variables
Variable initialization

Modifying in functions

1 void tripple(int &x){

2 x*=3;

3 cout << "trippled to " << x << "\n';
.

5 signed main(){

6 int a = 5;

7 tripple(a);

8 cout << "a: " << a << "\n";

o }

Daniel Rutschmann Advanced C++



C++ semantics Call by value and by reference
Reference variables
Variable initialization

Modifying in functions

1 void tripple(int &x){

2 x*=3;
3 cout << "trippled to " << x << "\n';
.
5 signed main(){
6 int a = 5;
7 tripple(a);
8 cout << "a: " << a << "\n";
o }
Output:
trippled to 15
a: 15

a is a reference pointing to x, so modifying x does change a.

Daniel Rutschmann Advanced C++



C++ semantics value and by reference
Reference variables
Variable initialization

Performance

1 vector<int> append_pm(vector<int> v, int val){
2 v.push_back(val) ;

3 v.push_back(-val);

4 return v;

5}

6 signed main(){

7 vector<int> nums;

8 for(int i=1;i<100000;++i){

9 nums = append_mp(nums, i);
10 }

11}

nums is copied to v every time. This is slow (= 4 seconds).

Daniel Rutschmann Advanced C++



C++ semantics Call by value and by reference
Reference variables
Variable initialization

Performance

1 void append_pm(vector<int> &v, int val){

2 v.push_back(val) ;

3 v.push_back(-val);

1}

5 signed main(){

6 vector<int> nums;

7 for(int i=1;i<100000;++1i){
8 append_mp (nums, i);

9 }

0}

v points to nums, no copy created. This is fast (< 0.01 seconds).

Daniel Rutschmann Advanced C++



C++ semantics Call by value and by reference
Reference variables
Variable initialization

Call by value

Use call by value if you want a copy that can be changed

independently.
1 int next_odd_square(int x){
2 if (x%2 == 0) ++x;
3 return x*Xx;
4}

Daniel Rutschmann Advanced C++



C++ semantics Call by value and by reference
Ref YELELIES
Variable initialization

Call by reference

Use call by reference if you want to modify the original inside the
function.

1 void swap_ints(int &a, int &b){

2 int tmp = a;
3 a =b;

4 b = tmp;
5}

(Of course, you could just use std: :swap(a, b) in this example.)

Daniel Rutschmann Advanced C++



C++ semantics Call by value and by reference
Reference variables
Variable initialization

Call by const reference

Use call by const reference if you don't modify the variable inside
the function.

1 int square(int consté&x){
2 return x*Xx;
s}

This is the most common case and “const” helps you catch bugs.

1 void add_x_to_y(int const&x, int &y){

2 // error: assignment of read-only reference ’z’
3 X+=y;

4 // correct would be y+=z;

5}

Note that y is passed by reference.

Daniel Rutschmann Advanced C++



C++ semantics Call by value and by reference
Reference variables
Variable initialization

Local reference variables

You can also declare local variables as references.

1 vector<vector<int> > table;
2 void process(int const&x, int const&y){

3 int &val = tablel[x] [y];
4 val = 3 * val + 1;

5 while(val % 2 == 0){

6 val/=2;

7 }

s F

This avoids writing table [x] [y] every time.

Daniel Rutschmann Advanced C++



C++ semantics Call by value and by reference
Reference variables
Variable initialization

Dangling references

References should not outlife the variable they point to.

1 int& sum(int const x, int const&y){

2 int ret = x + y;

3 // A reference to ret is returned,

4 return ret;

5 // but ret leaves the scope here.

6

7 signed main(){

8 int &val = sum(2, 3);

9 // wal points to ret, but ret no longer exists!
0}

This is undefined behaviour.

Daniel Rutschmann Advanced C++



C++ semantics Call by e and by reference
{ ariables
Variable initialization

Default initialization

Non-class types and arrays get initialized to indeterminate values.

1 signed main(){

2 int x; // = has indeterminate wvalue

3 cout << x << "\n" // undefined behaviour

4 array<int, 3> v; // indeterminate wvalues

5 cout << v[1] << "\n" // undefined behaviour
6

Class types get initialized by calling the default constructor.

1 signed main({
2 vector<int> v; // well defined, v s an empty vector

3}

Daniel Rutschmann Advanced C++



C++ semantics Call by e and by reference
{ ariables
Variable initialization

Zero initialization

You can intialize to 0 with brace initialzation.

1 signed main(){

2 int x{}; // = is zero

3 int y = 0; // y is zero too

4 cout << x << " " <<y << "\n" // prints 0 0
5 array<int, 3> v{}; // v <¢s {0, 0, OF

6 cout << v[1] << "\n" // prints 0

7}

This also works with class types.

1 signed main(){
2 vector<int> v{}; // v is an empty wector

3}

Daniel Rutschmann Advanced C++



C++ semantics Call by va nd by reference
Reference es
Variable initialization

Initialization: Things to avoid

There's no need to call the constructor explicitly.

1 signed main(){

2 vector<vector<int> > v = vector<vector<int> >();
3 // just use vector<vector<int> > v{};
4}

You can't use () for zero initialization, as that declares a function.

1 signed main(){

2 int a();

3 // a is a function that takes mo arguments
1 // and returns an int

5}

Daniel Rutschmann Advanced C++



Strings and characters

Characters

Use char to store single characters.
1 char a = ’a’;
2 char zero = ’0’;
s // characters convert to integers
4 // see man ascii
5 char b = a + 1;
6 char nine = zero + 9;
7 cout << a << b << " " << zero << nine;

Note that char promotes to int in operations.

1 char a = ’a’;
2 cout << a+l; // prints 98 (=asciti wvalue of ’b’)

Daniel Rutschmann Advanced C++



Strings and characters

Strings

Use string to store single characters. This is more convenient
than using vector<char>.

1 string s = "abc";

2 string t = "123";

s string st = s + t; // concatenate

4 s += t;

5 cout << § << "M << g << "M << gt << "\n";

6 // abcl23 123 abcl23

7 cin >> t; // read from stdin

Daniel Rutschmann Advanced C++



Strings and characters

String operations

1 string s = "abcdef"

2 string cd = s.substr(2, 2); // (pos, length)
3 int pos = s.find("de") // 3

4 string aaaa(4, ’a’); // (length, character)

Daniel Rutschmann Advanced C++



Struct and tuple

Struct

Suppose we want to store 2-dimensional points with an id. Using
multiple vectors is quite cumbersome.

1 vector<int> x(n), y(n), id(n);

2 for(int i=0;i<n;++i){

3 cin >> x[i] >> y[i] >> id[i];

4}

5 // How do we sort them by z-coordinate?
6 // sort(z.begin(), z.end())

7 // => vy and tid don’t match anymore.

Daniel Rutschmann Advanced C++



Struct and tuple

Struct

A struct can bundle values together.

1 struct Point{

2 int x, y, id;

3 ks

4 // list initialization {z, y, %id}

5 Point origin{0, 0, -1};

6 vector<Point> points;

7 for(Point &e:points){

8 cin >> e.x >> e.y >> e.id;

o }

1 // Now we can sort them

11 sort(points.begin(), points.end(), [](Point const&a,
—» Point const&b){return a.x < b.x;});

Daniel Rutschmann Advanced C++



Struct and tuple

Operator overloading

1

© 0 N O g s W N

e e e
= W N = O

15
16
17

struct Point{

};

int x, y, id;

// compare by xz-coordinate

bool operator<(Point const&o)constq{
return x < 0.X;

}

bool operator==(Point const&o)const{
return X == 0.X;

¥

// add two points
Point operator+(Point const&o)const{
return Point{x+o.x, yto.y, -1};

}

Point x{1, 0, 1}, y{0, 1, 23};
Point z = x + y;
if(y < z) x = y;

Daniel Rutschmann Advanced C++



Struct and tuple

A pair has two values: “first” and “second”.

1 pair<int, char> p(42, ’x’);

2 cout << p.first << " " << p.second; // 42 =
3 pair<int, char> q = make_pair(42, ’x’);
4 p.second = 'n’;

5 if (p < @) cout << "Yes"; // lexicographic comparison
¢ if(p == q) cout << "Nope';

7 int a;

s char c;

o tie(a, c) = p; // unpack pair

10 vector<pair<int, int> > v; // container of pairs

Daniel Rutschmann Advanced C++



Struct and tuple

Nested pairs can get messy.

1 pair<pair<int, int>, pair<pair<bool, int>, char> > p;
2 p.second.first.second = 3;
A tuple can store any fixed number of variables.
1 tuple<int, int, bool, int, char> p;
2 get<3>(p) = 3;
3 cout << get<0>(p);
1 get<d>(p) = ’x7;
You can also use an array if all types are equal.
1 array<int, 5> a;
2 al2] = 1;

This can quickly get messy. (What was get<3>(p) again?). Use a
struct instead.

Daniel Rutschmann Advanced C++



	C++ semantics
	Call by value and by reference
	Reference variables
	Variable initialization

	Strings and characters
	Struct and tuple

