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Breadth First Search (BFS)

First explore breadth

Nodes visited in order of distance to start

e Thus find shortest path (if equal lengths)
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BFS Implementation




Find Component
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Generations / Queue

Generations:

[]
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Generations / Queue

Generations

[7]

Queue (first in, first out)
[6]

[ 10, 5] [7,6,10,5 8, 9]

[8 9]
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Adjacency List

0: [1, 3]
1: [0, 2, 3]
2:[1,4]
3:[0,1]
4: [2]

5: 16,8, 9]
6: [5,7,10]
7:[6]

8 [5,10]
9:[5]

10: [ 6, 8]
11: [12]
12: [11]
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BFS Implementation

e Visited flag for each node
e Queue to store neighbors

e graph is adjacency list

from collections import deque

def bfs(start):

q = deque()
visited = [False] % len(graph)

gl w N =
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BFS Implementation

e Process start node

def bfs(start):

visited [start] = True
q.appendleft(start)

A w NN =
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BFS Implementation

e Process neighbors
e Check whether not visited

e Add to queue and set visited

def bfs(start):

while len(q) > O:
current = q.pop()
for neighbor in graph[current]:
if not visited [neighbor]:
q.appendleft(neighbor)
visited [neighbor] = True

O N O ok N =
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BFS Implementation

e Return visited nodes

def bfs(start, end):

3 return visited
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BFS Implementation

1 def bfs(start):

2 q = deque() # initialize

3 visited = [False] % len(graph)

4

5 visited [start] = True

6 q.appendleft(start)

7

8 while len(q) > 0: # traverse graph
9 current = q.pop()

10 for neighbor in graph[current]:
11 if not visited|[neighbor]:

12 q.appendleft(neighbor)

13 visited [neighbor] = True
14 return visited
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Shortest Distance Implementation




Shortest Distance
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Shortest Distance Implementation

1. List of distance to start

2. Upon adding to queue, store distance
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Shortest Distance Implementation

e List of distance to start

def bfs(start, target):

visited = [False] % len(graph)
distance = [0] * len(graph)

AW N =
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Shortest Distance Implementation

e Store distance

def bfs(start, target):

visited [neighbor] = True
distance[neighbor] = distance[current] + 1

AW N =
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Shortest Distance Implementation

e Return shortest distance

e Note: we know shortest distance to every node

def bfs(start, target):

3 return distance|[target]
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Shortest Distance Implementation

1 def bfs(start, target):

2 q = deque() # initialize

3 visited = [False] % len(graph)

4 distance = [0] % len(graph)

5

6 visited [start] = True

7 q.appendleft(start)

8

9 while len(q) > 0: # traverse graph
10 current = q.pop()

11 for neighbor in graph[current]:
12 if not visited [neighbor]:

13 q.appendleft(neighbor)

14 visited [neighbor] = True

15 distance[neighbor] = distance[current] + 1
16 return distance|[target]
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Shortest Path Implementation




Shortest Path
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Shortest Path Implementation

1. Store "parent” of node

2. Upon adding to queue, store parent
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Shortest Path Implementation

e List of parents

def bfs(start, target):

visited = [False] % len(graph)
parent = [—1] % len(graph)

AW N =
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Shortest Path Implementation

e Store parent

def bfs(start, target):

visited [neighbor] = True
parent[neighbor] = current

AW N =
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Shortest Path Implementation

e Return shortest path
e Note: we know shortest path to every node

def bfs(start, target):

if parent[target] =— —1:
return []

path = []

current = target

while current !'= —1:
path.append(current)

© 00 N O o & W N -

current = parent[current]

=
o

return reversed (path)
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ortest Path Implementation

def bfs(start, target):

q = deque() # initialize
visited = [False] = len(graph)
parent = [—1] = len(graph)
visited [start] = True

q.appendleft(start)

while len(q) > 0: # traverse graph
current = q.pop()
for neighbor in graph[current]:
if not visited [neighbor]:
q.appendleft(neighbor)
visited [neighbor] = True
parent[neighbor] = current

if parent[target] = —1: # reconstruct
return []

path = ]

current = target

while current = —1:
path.append(current)
current = parent[current]

return list (reversed (path))

path
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Runtime




e Each node is visited exactly once

e Each edge is visited exactly twice
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O(n+ m)
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Summary




e Works with directed graphs
e Can find shortest path to all nodes

e Sometimes only implicit state
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Similar to DFS

Progress " by generation”

Useful for many different problems

e E.g. components, shortest path, bipartite
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Conclusion

Bug Bounty: 1 Prigeli
(expires Sunday 10pm)

And now is your last chance for Pizzal!
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