BFS

Breadth First Search

Daniel Graf (Slides by Benjamin Schmid)
2017-11-04

Swiss Olympiad in Informatics

Introduction

Graph traversal

Shortest path

start

target

Shortest path

Shortest path

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

Shortest path

start

target

20

Shortest path

start

target

21

Breadth First Search (BFS)

First explore breadth

Nodes visited in order of distance to start

e Thus find shortest path (if equal lengths)

22

BFS Implementation

Find Component

23

Generations / Queue

Generations:

[]

24

Generations / Queue

Generations:
[7]
[]

25

Generations / Queue

Generations:
[7]
[6]

26

Generations / Queue

Generations:
[7]
[6]

27

Generations / Queue

Generations:
[7]

[6]

[]

28

Generations / Queue

Generations:
[7]

[6]
[10,5]

29

Generations / Queue

Generations:
[7]

[6]
[10,5]

30

Generations / Queue

Generations:
[7]

[6]

[10, 5]

[]

31

Generations / Queue

Generations:
[7]

[6]

[10, 5]
[8]

32

Generations / Queue

Generations:
[7]

[6]
[10,5]
[8]

33

Generations / Queue

Generations:
[7]

[6]

[10, 5]
[8]

34

Generations / Queue

Generations:

[7]
[6]
[10,5]
[8.9]

85

Generations / Queue

Generations:

[7]
[6]
[10,5]
[8.9]

36

Generations / Queue

Generations:
[7]

[6]
[10,5]

[8 9]

[]

37

Generations / Queue

Generations:
[7]

[6]
[10,5]

[8 9]

[]

38

Generations / Queue

Generations:
[7]

[6]
[10,5]

[8 9]

[]

39

Generations / Queue

Generations:
[7]

[6]
[10,5]

[8 9]

[]

40

Generations / Queue

Generations

[7]

Queue (first in, first out)
[6]

[10, 5] [7,6,10,5 8, 9]

[8 9]

41

Adjacency List

0: [1, 3]
1: [0, 2, 3]
2:[1,4]
3:[0,1]
4: [2]

5: 16,8, 9]
6: [5,7,10]
7:[6]

8 [5,10]
9:[5]

10: [6, 8]
11: [12]
12: [11]

42

BFS Implementation

e Visited flag for each node
e Queue to store neighbors

e graph is adjacency list

from collections import deque

def bfs(start):

q = deque()
visited = [False] % len(graph)

gl w N =

43

BFS Implementation

e Process start node

def bfs(start):

visited [start] = True
q.appendleft(start)

A w NN =

44

BFS Implementation

e Process neighbors
e Check whether not visited

e Add to queue and set visited

def bfs(start):

while len(q) > O:
current = q.pop()
for neighbor in graph[current]:
if not visited [neighbor]:
q.appendleft(neighbor)
visited [neighbor] = True

O N O ok N =

45

BFS Implementation

e Return visited nodes

def bfs(start, end):

3 return visited

46

BFS Implementation

1 def bfs(start):

2 q = deque() # initialize

3 visited = [False] % len(graph)

4

5 visited [start] = True

6 q.appendleft(start)

7

8 while len(q) > 0: # traverse graph
9 current = q.pop()

10 for neighbor in graph[current]:
11 if not visited|[neighbor]:

12 q.appendleft(neighbor)

13 visited [neighbor] = True
14 return visited

47

Shortest Distance Implementation

Shortest Distance

48

Shortest Distance Implementation

1. List of distance to start

2. Upon adding to queue, store distance

49

Shortest Distance Implementation

e List of distance to start

def bfs(start, target):

visited = [False] % len(graph)
distance = [0] * len(graph)

AW N =

50

Shortest Distance Implementation

e Store distance

def bfs(start, target):

visited [neighbor] = True
distance[neighbor] = distance[current] + 1

AW N =

Bl

Shortest Distance Implementation

e Return shortest distance

e Note: we know shortest distance to every node

def bfs(start, target):

3 return distance|[target]

52

Shortest Distance Implementation

1 def bfs(start, target):

2 q = deque() # initialize

3 visited = [False] % len(graph)

4 distance = [0] % len(graph)

5

6 visited [start] = True

7 q.appendleft(start)

8

9 while len(q) > 0: # traverse graph
10 current = q.pop()

11 for neighbor in graph[current]:
12 if not visited [neighbor]:

13 q.appendleft(neighbor)

14 visited [neighbor] = True

15 distance[neighbor] = distance[current] + 1
16 return distance|[target]

53

Shortest Path Implementation

Shortest Path

54

Shortest Path Implementation

1. Store "parent” of node

2. Upon adding to queue, store parent

55

Shortest Path Implementation

e List of parents

def bfs(start, target):

visited = [False] % len(graph)
parent = [—1] % len(graph)

AW N =

56

Shortest Path Implementation

e Store parent

def bfs(start, target):

visited [neighbor] = True
parent[neighbor] = current

AW N =

57

Shortest Path Implementation

e Return shortest path
e Note: we know shortest path to every node

def bfs(start, target):

if parent[target] =— —1:
return []

path = []

current = target

while current !'= —1:
path.append(current)

© 00 N O o & W N -

current = parent[current]

=
o

return reversed (path)

58

o
H O ©OW~NOOUA~®WNR

NN NN B R e e
A WNHFHFOOWWLWNOOO B~ WN

ortest Path Implementation

def bfs(start, target):

q = deque() # initialize
visited = [False] = len(graph)
parent = [—1] = len(graph)
visited [start] = True

q.appendleft(start)

while len(q) > 0: # traverse graph
current = q.pop()
for neighbor in graph[current]:
if not visited [neighbor]:
q.appendleft(neighbor)
visited [neighbor] = True
parent[neighbor] = current

if parent[target] = —1: # reconstruct
return []

path =]

current = target

while current = —1:
path.append(current)
current = parent[current]

return list (reversed (path))

path

59

Runtime

e Each node is visited exactly once

e Each edge is visited exactly twice

60

O(n+ m)

61

Summary

e Works with directed graphs
e Can find shortest path to all nodes

e Sometimes only implicit state

62

Similar to DFS

Progress " by generation”

Useful for many different problems

e E.g. components, shortest path, bipartite

63

Conclusion

Bug Bounty: 1 Prigeli
(expires Sunday 10pm)

And now is your last chance for Pizzal!
64

	Introduction
	Shortest path
	BFS Implementation
	Shortest Distance Implementation
	Shortest Path Implementation
	Runtime
	Summary

