
First Round SOI 2017

Solution Booklet

Swiss Olympiad in Informatics

January 7, 2017

Task numberriddle

1 Number Riddle
The Number Riddle is a riddle where you get N numbers and you have to add or subtract them to
get a given result R. You have to use all numbers and you are not allowed to subtract the first one.
You simply have to output whether it is possible to reach R or not. The subtasks differ from each
other solely by the amount of numbers N and the amount of subtractions allowed in the solution.

Subtask 1: Warm up (25 points)

The simplest possible riddle consists only of two numbers, a and b. All we have to do is comparing
a + b and a − b to the result R.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 int solve(int N, int R, int *n) {
6 return (R == n[0] + n[1]) || (R == n[0] - n[1]);
7 }
8

9 int main() {
10 int T;
11 scanf("%d", &T);
12

13 for (int t = 0; t < T; t++) {
14 int N, R;
15 scanf("%d %d", &N, &R);
16 int n[N];
17 for (int i = 0; i < N; i++) {
18 scanf("%d", &n[i]);
19 }
20 printf("Case #%d: %s\n", t + 1, solve(N, R, n) ? "YES" : "NO");
21 }
22 return 0;
23 }

Subtask 2: One subtraction (25 points)

Things get more interesting when more numbers are given. To reduce the complexity, at most one
subtraction is allowed.

You get a linear time solution by calculating the sum and then subtract each number individually.
Of course you have to subtract twice its value a + b + c + ... − 2b � a − b + c +

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 bool isodd(int x) {
6 return x%2 != 0;
7 }

3

Swiss Olympiad in Informatics

Solutions First Round 2017

8

9 int solve(int N, int R, int *n) {
10 int sum = 0;
11 for (int i = 0; i < N; i++)
12 sum += n[i];
13

14 if (sum < R || isodd(sum) != isodd(R))
15 return 0;
16

17 if (sum == R)
18 return 1;
19

20 for (int i = 1; i < N; i++) {
21 if ((sum - 2 * n[i]) == R)
22 return 1;
23 }
24

25 return 0;
26 }

Subtask 3: Two subtractions (25 points)

As in the previous task, we now have multiple numbers and a limited set of operations. This time
we are allowed to subtract twice. We can solve this by using an additional loop. It doesn’t matter in
which order we subtract the numbers a + b + c + ...− 2b − 2c � a + b + c + ...− 2c − 2b � a − b − c +
The inner loop could, therefore, start with the proceeding element of the outer loop. The program
is not only marginally faster, it also ensures that we do not subtract the same element twice.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 bool isodd(int x) {
6 return x%2 != 0;
7 }
8

9 int solve(int N, int R, int *n) {
10 int sum = 0;
11 for (int i = 0; i < N; i++)
12 sum += n[i];
13

14 if (sum < R || isodd(sum) != isodd(R))
15 return 0;
16

17 if (sum == R)
18 return 1;
19

20 for (int i = 1; i < N; i++) {
21 int p = sum - 2 * n[i];
22 if (p == R)
23 return 1;
24 for (int j = i + 1; j < N; j++)
25 if ((p - 2 * n[j]) == R)
26 return 1;

4

Task numberriddle

27 }
28 return 0;
29 }

Subtask 4: Countless possibilities (25 points)

As the title suggests, it is not possible to solve this task using brute-force. You have up to N � 100
numbers you can combine with either + or −, thus resulting in 299 possible equations.
Instead of calculating this individualy, we store all the provisional results and apply the next

number to them. To store them we could either use some kind of container which removes
duplicates or a bool array with the size of the sum wherein we mark the numbers we were able to
reach.

1 #include <bits/stdc++.h>
2 #define FOR(i, n) for (int i = 0; i < n; i++)
3 #define FORS(i, n, s) for (int i = s; i < n; i++)
4

5 using namespace std;
6

7 int main() {
8 int tcn;
9 cin >> tcn;

10 FOR(t, tcn) {
11 int n, r;
12 cin >> n >> r;
13 vector<int> num(n);
14 FOR(i, n) { cin >> num[i]; }
15 set<int> pos;
16 pos.insert(num[0]);
17 FORS(i, n, 1) {
18 set<int> np;
19 for (auto p : pos) {
20 np.insert(p + num[i]);
21 np.insert(p - num[i]);
22 }
23 pos = np;
24 }
25 cout << "Case #" << t + 1 << ": "
26 << ((string[]){"NO", "YES"})[pos.find(r) != pos.end()] << "\n";
27 }
28

29 return 0;
30 }

5

Swiss Olympiad in Informatics

Solutions First Round 2017

2 Super Powers
Subtask 1: Exactly C Superheroes (20 points)

In this subtask you have to choose C superheroes and you can choose the same one several times.
As long as there are still heroes with negative values we can just take the smallest one and invert

it (this will give us the most possible addition to the sum). To do this we just sort the list and
process all values until they get positive. Afterwards we swap the smallest value until we used up
all the swaps.

For all subtasks it is important to use long long int instead of just int because the sum can get
quite large.

1 #include <bits/stdc++.h>
2 using namespace std;
3 using lli = long long int;
4

5 int main() {
6 int tcn;
7 cin >> tcn;
8 for (int t = 1; t <= tcn; t++) {
9 int c, n;
10 cin >> c >> n;
11 vector<int> k(n);
12 for (int i = 0; i < n; i++) {
13 cin >> k[i];
14 }
15

16 // flip negative values as long as possible
17 sort(k.begin(), k.end());
18 int lim = min(c, n);
19 for (int i = 0; i < lim; i++) {
20 if (k[i] < 0) {
21 k[i] *= -1;
22 c--;
23 } else {
24 break;
25 }
26 }
27

28 // if we have some flips left we flip the smallest value
29 if (c > 0 && c % 2 == 1) {
30 int mi = 0;
31 for (int i = 0; i < n; i++) {
32 if (k[i] < k[mi]) {
33 mi = i;
34 }
35 }
36 k[mi] *= -1;
37 }
38

39 lli sum = 0;
40 for (int i : k) {

6

Task superpowers

41 sum += i;
42 }
43 cout << "Case #" << t << ": " << sum << "\n";
44 }
45 }

Subtask 2: C Different Superheroes (20 points)

In this subtask you have to choose C different superheroes.
We do the same thing as in the previous subtask but instead of flipping the same value until we

used up our flips we flip the smallest possible value that wasn’t flipped already. For this we sort
the list and flip the first C values.

1 #include <bits/stdc++.h>
2 using namespace std;
3 using lli = long long int;
4

5 int main() {
6 int tcn;
7 cin >> tcn;
8 for (int t = 1; t <= tcn; t++) {
9 int c, n;

10 cin >> c >> n;
11 vector<int> k(n);
12 for (int i = 0; i < n; i++) {
13 cin >> k[i];
14 }
15

16 // we always swap the smallest value that wasn't already swapped
17 sort(k.begin(), k.end());
18 int lim = min(c, n);
19 for (int i = 0; i < lim; i++) {
20 k[i] *= -1;
21 }
22

23 lli sum = 0;
24 for (int i : k) {
25 sum += i;
26 }
27 cout << "Case #" << t << ": " << sum << "\n";
28 }
29 }

Subtask 3: C Contiguous Superheroes (20 points)

In this subtask the C superheroes have to be contiguous.
To solve this we can use a rolling sum to find the segment with the most negative sum. If we flip

this segment we will have an optimal solution. The rolling sum works as follows: We sum up the
first C values. This is obviously the sum from 0 to C − 1. Wo now go through the whole list for i in
[C,N[and in each step update our sum by adding the next value on the right and subtract the most
left element that was still part of the sum. As we added one element on the right and removed one

7

Swiss Olympiad in Informatics

Solutions First Round 2017

on the left the sum still consists of C numbers that are continuous. In each step we compare it to
our previous most negative sum and update it if necessary.

1 #include <bits/stdc++.h>
2 using namespace std;
3 using lli = long long int;
4

5 int main() {
6 int tcn;
7 cin >> tcn;
8 for (int t = 1; t <= tcn; t++) {
9 int c, n;
10 cin >> c >> n;
11 vector<int> k(n);
12 for (int i = 0; i < n; i++) {
13 cin >> k[i];
14 }
15

16 lli sum = 0;
17 for (int i : k) {
18 sum += i;
19 }
20

21 // init rolling sum
22 lli rolling = 0;
23 for (int i = 0; i < c; i++) {
24 rolling += k[i];
25 }
26

27 // find maximum
28 lli ma = rolling;
29 for (int i = c; i < n; i++) {
30 rolling += k[i] - k[i - c];
31 ma = min(ma, rolling);
32 }
33

34 cout << "Case #" << t << ": " << (sum - 2 * ma) << "\n";
35 }
36 }

Subtask 4: Contiguous Superheroes Small (20 points)

In this two subtask you can choose any number of continuous superheroes. For subtask 4 you were
able to use a slower solution (e.g. use the code from the previous subtask with all possible values
for C). We will explain the efficient solution in the next section.

Subtask 5: Contiguous Superheroes Large (20 points)

In this two subtask you can choose any number of continuous superheroes. For subtask 4 you were
able to use a slower solution (e.g. use the code from the previous subtask with all possible values
for C). We will only explain the efficient solution.

8

Task superpowers

The problem one has to solve in this task is known as the maximum subarray problem. Given an
array of numbers, find any number of continuous values such that their sum is maximal. In our
case we want to find the subarray with the smallest (most negative) sum instead of the largest sum.

To solve this we will go through the list from left to right. We keep track of the smallest segment
we have seen so far and the minimal value of all segments that end at the current location. One
thing we notice is that should the segment that ends at the current location get positive with the
current value added it’s better to take no element at all. In this case we reset this value to zero.
Otherwise we add the current value.

In the implementation below ms stores the minimal segment seen so far and asu is the active sum
of the segment ending at the current position.

Note that to get the solution we have to subtract the found segment twice from the original sum
because we flip the sign and don’t just take it away. For example if you had a + b + c and flip b you
have now a − b + c � a + b − b − b + c � a + b − 2 ∗ b + c

1 #include <bits/stdc++.h>
2 using namespace std;
3 using lli = long long int;
4

5 int main() {
6 int tcn;
7 cin >> tcn;
8 for (int t = 1; t <= tcn; t++) {
9 int n;

10 cin >> n;
11 vector<int> k(n);
12 for (int i = 0; i < n; i++) {
13 cin >> k[i];
14 }
15

16 lli sum = 0;
17 for (int i : k) {
18 sum += i;
19 }
20

21 // maximum sub array
22 lli ms = 0;
23 lli asu = 0;
24 for (int i = 0; i < n; i++) {
25 asu += k[i];
26 if (asu > 0) {
27 asu = 0;
28 }
29 ms = min(ms, asu);
30 }
31

32 lli sol = sum - 2 * ms;
33 cout << "Case #" << t << ": " << sol << "\n";
34 }
35 }

9

Swiss Olympiad in Informatics

Solutions First Round 2017

3 Cup Sort
This task is about ordering cups of different colors by swapping adjacent cups, or more precisely
about calculating the number of such swaps needed to sort the cups according to some criterium.
The cups’ colors are represented by a list of integers. Mathematically speaking, you were asked to
count the number of inversions in such a list.

Subtask 1: At most one move (10 points)

Here, you are given a list of N integers which are all either 0 or 1, and your task is to find out if the
list can be sorted ascendingly with only one swap of adjacent numbers.
One possible solution was to look for the first 1. If there is no 1, the cups are already sorted.

Otherwise, look for the first 0 after it: If there is none, the cups are sorted. If there is one at the
position directly behind the first 1, we need one swap to order them; look for another 0 after the 1,
if there is another 0 we need at least two swaps, otherwise we can sort the cups with one move. If
there is a 0 more than one position after the first 1, we would have to swap the 0 with all the 1’s in
between, which would be more than one swap.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int main() {
5 int t;
6 cin >> t;
7 for (int tc = 1; tc <= t; ++tc) {
8 int n;
9 cin >> n;
10 vector<int> colors(n);
11 for (int &c : colors)
12 cin >> c;
13 int oi = -1; // index of first 1
14 int zi = -1; // index of first 0 after the first 1
15 bool possible = true;
16 for (int i = 0; i < n; ++i) {
17 if (colors[i] == 1 && oi == -1)
18 oi = i;
19 else if (colors[i] == 0 && oi >= 0) {
20 if (zi >= 0 || i - oi > 1) { // need more than one swap if more
21 // than one 0 after the first 1 or
22 // if multiple 1's before the 0
23 possible = false;
24 break;
25 }
26 zi = i;
27 }
28 }
29 if (possible)
30 cout << "Case #" << tc << ": YES\n";
31 else
32 cout << "Case #" << tc << ": NO\n";
33 }

10

Task cupsort

34 }

Subtask 2: Two colors (20 points)

Now we want to know how many swaps exactly we need for a list as in the first subtask.
There is a simple solution in O(N)which we get by slightly generalizing the idea from subtask

one. We iterate over the list keeping track of the number of 1’s encountered so far, adding that
number at every 0 we encounter. This is correct because clearly, we have to swap every 0 with every
1 before it at some point while sorting. But we don’t have to do any other swaps than these because
swapping two 0’s is pointless and swapping a 0 with a 1 after it is also not useful.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int main() {
5 int t;
6 cin >> t;
7 for (int tc = 1; tc <= t; ++tc) {
8 int n;
9 cin >> n;

10 int ones = 0;
11 int swaps = 0;
12 for (int i = 0; i < n; ++i) {
13 int ci;
14 cin >> ci;
15 if (ci == 1)
16 ++ones;
17 else
18 swaps += ones;
19 }
20 cout << "Case #" << tc << ": " << swaps << "\n";
21 }
22 }

Subtask 3: Different colors (20 points)

Here, all numbers are pairwise distinct, but they can be different from 0 and 1.
Now we can’t use an ad-hoc approach as before anymore. One way to solve it is by modifying a

classical sorting algorithm.
The conceptually easiest one is Bubble Sort, where we iterate over the list again and again until

the list is sorted, each time comparing each number with the one after it, swapping them if the first
one is bigger, and counting the number of swaps. As above we see that we never do an unnecessary
swap and that the algorithm will have to terminate after looping over the list at most N times,
leaving us with a sorted list, therefore the number we get is correct. But this takes O(N2) time in
the worst case. We can do better.

Thus we use Merge Sort. It only takes O(N · log(N)) time, which will even be fast enough for the
last subtask. Merge Sort is a divide and conquer algorithm, splitting the list into two halves, sorting
each half by recursively applying itself, and merging the two halves again. The modification we
have to make in order to count the inversions is counting them in each merge step and summing all
counts up. Merging two sorted arrays works as follows: We iterate over both arrays at the same

11

Swiss Olympiad in Informatics

Solutions First Round 2017

time, only comparing our current element in the left array with our current element in the right
array, putting the smaller one into the resulting list. We can do this because the two arrays are
already sorted, therefore we know that all elements before the current element are smaller and all
elements after the current element are larger. The number of inversions we undo at each step is:

• 0, if we take an element from the left half (we already counted the swaps with earlier numbers
from the right half, do not count them twice),

• the number of elements in the left half which are larger than the element we take, if we take
an element from the right half.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 vector<int> colors;
5 vector<int> tmp;
6

7 int merge(int l, int m, int r) {
8 int inversions = 0;
9 int lefti = l;
10 int righti = m;
11 int outi = l;
12 while (lefti < m && righti < r) {
13 if (colors[lefti] <= colors[righti]) {
14 tmp[outi] = colors[lefti];
15 ++outi;
16 ++lefti;
17 } else {
18 tmp[outi] = colors[righti];
19 inversions += m - lefti; // all colors with indices in [lefti,m)
20 // need to be swapped with colors[righti]
21 ++outi;
22 ++righti;
23 }
24 }
25 while (lefti < m) {
26 tmp[outi] = colors[lefti];
27 ++outi;
28 ++lefti;
29 }
30 while (righti < r) {
31 tmp[outi] = colors[righti];
32 ++outi;
33 ++righti;
34 }
35 copy(tmp.begin() + l, tmp.begin() + r,
36 colors.begin() + l); // copy the sorted range back
37 return inversions;
38 }
39

40 int mergesort(int l, int r) {
41 if (r - l <= 1) // there are no inversions in an empty list or a list with
42 // one element
43 return 0;
44 int m = l + (r - l) / 2;

12

Task cupsort

45 int inversions = mergesort(l, m) + mergesort(m, r);
46 inversions += merge(l, m, r);
47 return inversions;
48 }
49

50 int main() {
51 int t;
52 cin >> t;
53 for (int tc = 1; tc <= t; ++tc) {
54 int n;
55 cin >> n;
56 colors.resize(n);
57 tmp.resize(n);
58 for (int &c : colors)
59 cin >> c;
60 cout << "Case #" << tc << ": " << mergesort(0, n) << "\n";
61 }
62 }

Subtask 4: General case (20 points)

This subtask is almost the same as the one before, but not all numbers have to be distinct. We can
use the same algorithms, but need to take care to only swap numbers if the one which comes first is
strictly lager than the one later on, not swapping if they are equal. For the Merge Sort variant this
means preferring the first list when merging if both current elements are equal. This is already true
in the implementation above.

Subtask 5: Many cups (30 points)

This subtask adds two complications: First, O(N2) algorithms are too slow. And second, each
integer is replaced by a group of individually specified size of equal integers, i.e. the numbers get
assigned multiplicities. Note that there can still be different groups of the same integer.
When swapping two groups, the amount of swaps is actually the product of the sizes of the

groups, because each element of the first group has to be swapped with each element of the second
group. In the merge step, instead of keeping track of the number of elements left in the first list, we
need to keep track of the sum of their multiplicities.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 vector<pair<long long, long long>> colors;
5 vector<pair<long long, long long>> tmp;
6 vector<long long> prefsum;
7

8 long long merge(int l, int m, int r) {
9 long long inversions = 0;

10 int lefti = l;
11 int righti = m;
12 int outi = l;
13 while (lefti < m && righti < r) {
14 if (colors[lefti].second <= colors[righti].second) {

13

Swiss Olympiad in Informatics

Solutions First Round 2017

15 tmp[outi] = colors[lefti];
16 ++outi;
17 ++lefti;
18 } else {
19 tmp[outi] = colors[righti];
20 inversions += colors[righti].first *
21 (prefsum[m] - prefsum[lefti]); // all colors with
22 // indices in [lefti,m)
23 // need to be swapped
24 // with colors[righti]
25 ++outi;
26 ++righti;
27 }
28 }
29 while (lefti < m) {
30 tmp[outi] = colors[lefti];
31 ++outi;
32 ++lefti;
33 }
34 while (righti < r) {
35 tmp[outi] = colors[righti];
36 ++outi;
37 ++righti;
38 }
39 copy(tmp.begin() + l, tmp.begin() + r,
40 colors.begin() + l); // copy the sorted range back
41 for (int i = l; i < r; ++i) { // update prefsum
42 prefsum[i + 1] = prefsum[i] + colors[i].first;
43 }
44 return inversions;
45 }
46

47 long long mergesort(int l, int r) {
48 if (r - l <= 1) // there are no inversions in an empty list or a list with
49 // one element
50 return 0;
51 int m = l + (r - l) / 2;
52 long long inversions = mergesort(l, m) + mergesort(m, r);
53 inversions += merge(l, m, r);
54 return inversions;
55 }
56

57 int main() {
58 int t;
59 cin >> t;
60 for (int tc = 1; tc <= t; ++tc) {
61 int k;
62 cin >> k;
63 colors.resize(k);
64 tmp.resize(k);
65 prefsum.resize(k + 1);
66 for (auto &p : colors)
67 cin >> p.first >> p.second;
68 prefsum[0] = 0;
69 for (int i = 0; i < k; ++i)
70 prefsum[i + 1] = prefsum[i] + colors[i].first;

14

Task cupsort

71 cout << "Case #" << tc << ": " << mergesort(0, k) << "\n";
72 }
73 }

Subtask 6: Alternative Solution

There is also another way than Merge Sort to solve all subtasks in O(N · log(N)), namely using the
sort function provided by C++ and a data structure to calculate prefix sums quickly. Its advantage
is that it is shorter to code (and it is more frequently useful for the SOI than Merge Sort). The
probably best way to calculate prefix sums here is using a Fenwick Tree (sometimes also called
Binary Indexed Tree), as it is short to code. This is because the tree structure is implicitly given by
the binary representation of the indices, and the tree is stored as a simple vector/array. It represents
an array of numbers and allows us to query the prefix sum of any index in O(log n) and change an
element of the array in O(log n). The idea is then to store for each group of cups a tuple of three
numbers, namely the index in the input, the color and the multiplicity. Then we sort the list of
these tuples by their color. Note that if two cup groups have the same color we need to order them
by input index, so we do not count swaps of cups of the same color. Now the list is in the order we
want to sort it to and we can calculate the number of inversions from the indices in the input that
we stored:

Initialize the Fenwick Tree. Iterate over the list, adding the multiplicity of the current element at
the input index of the current element. All cups which were inserted earlier have smaller color. All
cups which were inserted earlier but have a higher input index (=index in Fenwick Tree) would
have to be swapped with the current element when sorting. Therefore for each element we count
the sum of elements later in the array, which is just the sum of the whole array minus the prefix
sum of the current element (again we need to take care to not count swaps with cups of same color).
During the iteration over the list we sum up all of these suffix sums. This gives us the total number
of inversions.

Note that there was a variant of this which is a bit worse: One could do the same approach "the
other way round", directly indexing the Fenwick Tree by the colors, but this requires an array of
size O(maxi�1,·,N ci)where ci are the colors, i.e. an array of the size of the maximum number in the
input, instead of the size of the input.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 vector<long long> ft;
5

6 void init(int n) {
7 ++n; // use one-based indexing
8 int l = 1;
9 while (l < n)

10 l *= 2;
11 ft = vector<long long>(l, 0);
12 }
13

14 void update(int i, long long k) {
15 ++i;
16 while (i < ft.size()) {
17 ft[i] += k;

15

Swiss Olympiad in Informatics

Solutions First Round 2017

18 i += i & -i;
19 }
20 }
21

22 long long query(int i) {
23 ++i;
24 long long prefsum = 0;
25 while (i > 0) {
26 prefsum += ft[i];
27 i -= i & -i;
28 }
29 return prefsum;
30 }
31

32 int main() {
33 int t;
34 cin >> t;
35 for (int tc = 1; tc <= t; ++tc) {
36 int k;
37 cin >> k;
38 vector<tuple<long long, long long, long long>> cg(k);
39 for (int i = 0; i < k; ++i) {
40 long long c, n;
41 cin >> n >> c;
42 cg[i] = make_tuple(c, i, n);
43 }
44 // sort by increasing colors, and if those are equal by increasing input
45 // index, so we do not count swaps of elements of the same color
46 sort(cg.begin(), cg.end());
47 init(k);
48 long long inv = 0;
49 for (int i = 0; i < k; ++i) {
50 inv += get<2>(cg[i]) * (query(k - 1) - query(get<1>(cg[i])));
51 update(get<1>(cg[i]), get<2>(cg[i]));
52 }
53 cout << "Case #" << tc << ": " << inv << "\n";
54 }
55 }

16

Task funny

4 Strange Function
In this task, you were given the implementation of a procedure funny and you were asked to derive
(ideally simpler) algorithms characterizing the behaviour of funny. There are inputs for which
funny crashes or does not terminate.

Subtask 1: Small Values with Termination Guarantee (10 points)

For this subtask, it was sufficient to execute the provided implementation of funny in order to
gather the required function outputs.

1 #include <iostream>
2 using namespace std;
3

4 long long funny(long long a, long long b) {
5 long long x = 1;
6 while (x < b) {
7 x *= 2;
8 }
9 long long s = x % b;

10 while (a >= b) {
11 a = (a & (x - 1)) + s * (a / x);
12 }
13 return a;
14 }
15

16 int main() {
17 int T;
18 cin >> T;
19 for (int t = 1; t <= T; t++) {
20 long long a, b;
21 cin >> a >> b;
22 cout << "Case #" << t << ": ";
23 cout << funny(a, b) << '\n';
24 }
25 }

Subtask 2: Small Values (10 points)

Here, funny does not terminate for some of the inputs. Experimenting with such inputs a bit, one
quickly arrives at the hypothesis that whenever the while loop does not terminate, it reaches a state
from which the value of the variable a no longer changes. This turns out to be true. Hence it was
enough to check for two subsequent equal values of a to detect non-termination. (The code below
also exploits the fact that funny only returns non-negative values.)

1 #include <iostream>
2 using namespace std;
3

4 long long funny(long long a, long long b) {
5 long long x = 1;

17

Swiss Olympiad in Informatics

Solutions First Round 2017

6 while (x < b) {
7 x *= 2;
8 }
9 long long s = x % b;
10 while (a >= b) {
11 long long c = (a & (x - 1)) + s * (a / x);
12 if (a == c) {
13 return -1;
14 }
15 a = c;
16 }
17 return a;
18 }
19

20 int main() {
21 int T;
22 cin >> T;
23 for (int t = 1; t <= T; t++) {
24 long long a, b;
25 cin >> a >> b;
26 cout << "Case #" << t << ": ";
27 long long r = funny(a, b);
28 if (r == -1)
29 cout << "NOTHING\n";
30 else
31 cout << r << '\n';
32 }
33 }

Subtask 3: Larger Values with Termination Guarantee (10 points)

Provided that the input/output code was able to deal with numbers that don’t fit inside a 32-bit
integer, the solution to subtask 1 was sufficient to score all points for this subtask. However, in
order to obtain all points for the theoretical justification, it was important to find an alternative
implementation that executes in O(1) time.
It turns out that if funny terminates with a result, it simply computes a%b, i.e. the remainder

when performing integer division of a by b.

1 #include <iostream>
2 using namespace std;
3

4 int main() {
5 int T;
6 cin >> T;
7 for (int t = 1; t <= T; t++) {
8 long long a, b;
9 cin >> a >> b;
10 cout << "Case #" << t << ": ";
11 cout << a % b << '\n';
12 }
13 }

18

Task funny

Subtask 4: Theoretical Justification for Subtask 3 (25 points)

In this subtask, you were asked to argue why your solution for subtask 3 produces the correct
result, and to analyze its running time. For the presented solution, it is easy to see that the new
implementation of funny runs in constant time (O(1)), as it involves only a single modulo operation.
It is slightly more difficult to see that it is actually correct.1

We first consider the values of the variables x and s. It is easy to see that x is always a power of 2.
(As it is initialized to 1, and subsequent modifying operations multiply its value by 2.) The final
value x is the smallest power of two that is not smaller than b, as the first while loop uses this as
the termination criterion. In particular, x < 2 · b, because otherwise x/2 ≥ b, and last iteration of
the while loop would not have been executed. From b ≤ x < 2 · b it follows that s � x%b � x − b.

Also note that the value of the variable a always remains non-negative: it is non-negative in the
beginning and the expression a′ � (a&(x − 1)) + s ·

⌊ a
x

⌋
is non-negative for non-negative a.

If x � 2i , then the binary representation of x is · · · 01 0 · · · 0︸︷︷︸
i times

and the binary representation of x − 1

is · · · 00 1 · · · 1︸︷︷︸
i times

. Therefore, the expression a&(x − 1) extracts the value represented by the last i digits

of the binary representation of a, which is precisely the same as a%2i � a%x (this is a well-known
bit trick).

It follows that we can express a′ as follows:

a′ � (a&(x − 1)) + s ·
⌊ a

x

⌋
� a%x + (x − b) ·

⌊ a
x

⌋
� a%x + x ·

⌊ a
x

⌋
− b ·

⌊ a
x

⌋
.

For non-negative a and x, a � a%x + x ·
⌊ a

x

⌋
, therefore

a′ � a − b ·
⌊ a

x

⌋
.

In particular, a′%b � a%b. In other words, the value of a%b remains invariant throughout the
execution of the procedure. If the program terminates, the final value of a satisfies 0 ≤ a < b
(otherwise the second while loop would not have terminated). It follows that the final value of a is
a%b (evaluated with the initial values of a and b).

Subtask 5: Larger Values (10 points)

Again, the solution for subtask 2 was sufficient to score all points for this subtask. However, we
present a solution that runs in constant time.

1 #include <iostream>
2 using namespace std;
3

4 int main() {
5 int T;
6 cin >> T;

1For the solution to subtask 1, correctness is trivial, but running time is not. It turns out that it is O(log a + log b), but
this is harder to analyze.

19

Swiss Olympiad in Informatics

Solutions First Round 2017

7 for (int t = 1; t <= T; t++) {
8 long long a, b;
9 cin >> a >> b;
10 cout << "Case #" << t << ": ";
11 if (b == 0 || a >= b && (b & (b - 1)) != 0 && ((a % b + b) & ~b) < b)
12 cout << "NOTHING\n";
13 else
14 cout << a % b << '\n';
15 }
16 }

Subtask 6: Theoretical Justification for Subtask 5 (35 points)

It suffices to argue that the solution prints NOTHING if and only if funny(a, b) does not produce
a result. If b � 0, then the computation of x%b will crash the program and it will not produce a
result, hence we should print NOTHING in this case.2 On the other hand, if a < b then the second
while loop in funny is not executed a single time, and funny trivially terminates.

Finally we consider the case where a ≥ b, and therefore the second while loop is executed at
least once.
We again consider the expression a′ � a − b · ba/xc. From this, we can immediately see that

a′ < a if a ≥ x, and otherwse a′ � a. Therefore, funny does not terminate if and only if the variable
a is at one point in time assigned a value such that b ≤ a < x. After this happens, a will be stuck at
this value forever. As x < 2 · b, and a%b remains invariant, there is at most one such value: a%b + b
(using the initial values of a and b). It follows that funny(a, b) terminates if a%b + b ≥ x.

We will now argue that the converse is also true: funny(a, b) does not terminate if a%b + b < x.
There exists a k such that a � a%b + k · b.3 As a ≥ b, k is at least 1. Also recall that x < b. Using
a%b + b < x, we derive the following lower bound for a′.

a′ � a%b + k · b − b ·
⌊

a%b + k · b
x

⌋

� a%b + b ·
(
k −

⌊ <x︷¨̈ ¨︸︸¨̈ ¨︷
a%b + b +

≤(k−1)x︷¨̈ ¨︸︸¨̈ ¨︷
(k − 1)b

x︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸
<k

⌋)
≥ a%b + b · (k − (k − 1))
� a%b + b
≥ b.

It follows that in this case, a can never be assigned a value below b, which means that funny(a,
b)will never terminate.
Therefore, funny(a, b) produces a result unless b � 0 or a ≥ b and a%b + b < x. In order to

evaluate this expression, it is necessary to compute x. If we use the method given in the procedure
2From a mathematical standpoint, x%0 � x, but hardware and programming languages do not support this. Note that
technically, x%0 exhibits undefined behaviour in C++ which means that you are not guaranteed to not get a result, but
this is what happens in practice. The Python version is required to raise an exception, however.

3This k is given by k �
⌊ a

b
⌋
.

20

Task funny

funny(a, b) to compute x, this computation will take time Θ(log b). If we avoid computing x in
case a < b, we can bring the computation time down to O(log(min(a , b))).
However, there was a hint in the task description that there are solutions that execute in time

o(log(min(a , b))). The simplest way to achieve this sub-logarithmic running time is to observe
that using bit shifts, powers of two can be computed in constant time: 2i � 1 << i. Since x is the
smallest power of two that is not smaller than b, we can compute x in logarithmic time by using
binary search on the exponent for a total running time of O(log(log(min(a , b)))).

However, there are bit tricks that bring execution time down to O(1) by avoiding computation of
x. First consider the special case where b is a power of two. We can check for this efficiently: b is a
power of two if and only if it is not zero, but (b&(b − 1)) � 0 (another well-known bit trick). In this
case, it is easy to verify that funny(a, b) terminates very quickly (x � b, s � 0, a′ � a%b).
If b is not a power of two, then b < x. Since x is a power of two, this means that (b&x) � 0: In

binary, x has exactly one digit 1, and this is the digit of smallest value that has a larger value than
any bit that is set in b. Because x/2 < a%b + b < 2 · x, if we want to check whether a%b + b is
smaller than x, it suffices to compute (a%b + b)&x: We have a%b + b ≥ x if and only if a%b + b has
the bit with value x set. This is also the highest bit that can be set in a%b + b. Furthermore we
know that b has the bit with value x/2 set and that this is the highest bit set in b.
Now consider the expression (a%b + b)&∼b. If a%b + b ≥ x, then also ((a%b + b)&∼b) ≥ x > b,

as the bit with value x is set in a%b + b and ∼b also has the bit with value x set because (b&x) � 0.
On the other hand, if a%b + b < x, then we will have that ((a%b + b)&∼b) < b, because a%b + b
does not have any bits with value at least x set, and the bitwise and with ∼b ensures that the highest
bit set in b is not set in the result. As this bit is set in b, the inequality follows. But this means that
a%b + b < x if and only if ((a%b + b)&∼b) < b.
Therefore, we can conclude that funny(a, b) returns a result unless b � 0 or a ≥ b and
(b&(b − 1)) , 0 and ((a%b + b)&∼b) < b. This condition can be evaluated in constant time.

21

Swiss Olympiad in Informatics

Solutions First Round 2017

5 Stofl’s Dissertation
This task is about creating a valid subthesis by tearing out some of the pages of a given thesis.
A thesis was considered valid if its page numbers were in increasing order. You were asked to
compute the length of the longest possible valid thesis, calculate the number of such theses or to
construct a thesis given a specific number of different longest valid subtheses it has to contain.
Mathematically speaking you had to compute the length of the longest increasing subsequence of a
permutation, count all longest increasing subsequences of a given permutation and construct a
permutation having exactly a certain number of longest increasing subsequences.

Subtask 1: Two page thesis (10 points)

Here youwere given a list of N page numbers and had to compute whether there is a valid subthesis
of length ≥ 2. One possibility was to check whether the sequence was decreasing, in which case the
answer is NO and otherwise the answer is always YES. You could also verify this by comparing all
pairs of page numbers. Or you could also run the code for the second subtask an check whether its
solution was ≥ 2.

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int main() {
5 int T, N;
6 cin >> T;
7 for (int t = 1; t <= T; ++t) {
8 cout << "Case #" << t << ": ";
9 cin >> N;
10 vector<int> data(N);
11 copy_n(istream_iterator<int>(cin), N, data.begin()); // read input
12 if (is_sorted(data.rbegin(), data.rend()))
13 cout << "NO\n"; // check if sequence is decreasing.
14 else
15 cout << "YES\n";
16 }
17 }

Subtask 2: Longest thesis (20 points)

In this subtask you had to calculate the length of the longest thesis that can be formed by tearing
out some of its pages. The longest such valid subthesis corresponds to the longest increasing subse-
quence. The longest increasing subsequence can be computed by a dynamic programming in O(N2)
using the state DP[position]− > length of the longest increasing subsequence ending at position
. It is possible to optimize this solution to O(N · log N) using a binary-search or segment trees or
even O(N · log log N), but this was not necessary to implement to earn the full score.

1 // O(N^2) implementation of longest increasing subsequence.
2 #include <bits/stdc++.h>
3 using namespace std;

22

Task dissertation

4

5 int main() {
6 int T, N;
7 cin >> T;
8 for (int t = 1; t <= T; ++t) {
9 cout << "Case #" << t << ": ";

10 cin >> N;
11 vector<int> data(N);
12 copy_n(istream_iterator<int>(cin), N, data.begin()); // read input
13 vector<int> dp(N, 1); // dp[pos] -> length of LIS ending at pos
14 for (int i = 0; i < N; ++i)
15 for (int j = 0; j < i; ++j)
16 if (data[j] < data[i])
17 dp[i] = max(dp[i], 1 + dp[j]);
18 cout << *max_element(dp.begin(), dp.end()) << "\n";
19 }
20 }

Subtask 3: All the possibilities (20 points)

Here you had to count the number of longest valid subtheses. The solutions from the previous
subtask can easily be adapted to not only compute the length of the longest increasing subsequence
but also the number of such sequences. A solution running in O(N2)was sufficiently fast to fully
solve this subtask.

1 // O(N^2) implementation for counting the number of longest increasing
2 // subsequence.
3 #include <bits/stdc++.h>
4 using namespace std;
5 const long long MOD = 1e9 + 7;
6 int main() {
7 int T, N;
8 cin >> T;
9 for (int t = 1; t <= T; ++t) {

10 cout << "Case #" << t << ": ";
11 cin >> N;
12 vector<int> data(N);
13 copy_n(istream_iterator<int>(cin), N, data.begin()); // read input
14 vector<int> dp(N, 1); // dp[pos] -> length of LIS ending at pos
15 for (int i = 0; i < N; ++i)
16 for (int j = 0; j < i; ++j)
17 if (data[j] < data[i])
18 dp[i] = max(dp[i], 1 + dp[j]);
19 vector<long long> cnt;
20 for (int i = 0; i < N; ++i)
21 for (int j = 0; j < i; ++j)
22 if (data[j] < data[i] && dp[j] == dp[i] + 1)
23 cnt[i] = (cnt[i] + cnt[j]) % MOD;
24 cout << *max_element(dp.begin(), dp.end()) << "\n";
25 }
26 }

23

Swiss Olympiad in Informatics

Solutions First Round 2017

1 // O(N log N) implementation for counting the number of longest increasing
2 // subsequence using binary-search.
3 #include <bits/stdc++.h>
4 using namespace std;
5

6 const long long MOD = 1e9 + 7;
7 int main() {
8 int testcases;
9 cin >> testcases;
10 for (int tt = 1; tt <= testcases; ++tt) {
11 int N;
12 cin >> N;
13 vector<vector<int>>
14 LIS; // decreasingly sorted vector of page numbers in
15 // which a LIS of a certain length ends
16 vector<vector<long long>>
17 LIScount; // prefix-sum over number of increasing
18 // subsequences of maximal length ending
19 // in that page number.
20 for (int i = 0; i < N; ++i) {
21 int curPage;
22 cin >> curPage;
23

24 // binary-search for the length of the LIS ending with the current
25 // page.
26 int pos = lower_bound(LIS.begin(), LIS.end(), curPage,
27 [](vector<int> const &vec, int a) {
28 return a > vec.back();
29 }) -
30 LIS.begin();
31 long long
32 curCount; // number of increasing subsequences of maximal length
33 // ending with the current page number.
34 if (pos == 0) {
35 curCount = 1; // special case: current page has the smallest
36 // number so far.
37 } else {
38 int prePos = pos - 1;
39 // binary-search on a decreasing vector we can use
40 // reverse-iterators.
41 int stackPos = LIS[prePos].rend() -
42 lower_bound(LIS[prePos].rbegin(),
43 LIS[prePos].rend(), curPage);
44 // calculate the number of LIS ending with the current page
45 // using the
46 // prefix-sums.
47 curCount = LIScount[prePos].back();
48 if (stackPos != 0)
49 curCount -= LIScount[prePos][stackPos - 1];
50 }
51 if (pos == LIS.size()) {
52 // special case: current page has a higher LIS than all previous
53 // pages.
54 LIS.push_back(vector<int>(1, curPage));
55 LIScount.push_back(vector<long long>(1, curCount));
56 } else {

24

Task dissertation

57 // Add current page.
58 LIS[pos].push_back(curPage);
59 // Update prefix sum.
60 LIScount[pos].push_back(LIScount[pos].back() + curCount);
61 }
62 // calculate modulo 1e9+7 to avoid overflows.
63 LIScount[pos].back() = (LIScount[pos].back() % MOD + MOD) % MOD;
64 }
65 cout << "Case #" << tt << ": " << LIScount.back().back() << "\n";
66 }
67 }

Subtask 4: Reconstruction (20 points)

Now you had to construct a thesis having exactly K longest valid subtheses. Mathematically
speaking you had to find a permutation of the numbers from 1 to N which has exactly K longest
increasing subsequences. One possibility is to first build a permutation having 2l longest increasing
subsequences. This can be donewith an increasing sequence of l decreasing twin-pairs (2 · k , 2 · k−1):
The sequence 2, 1, 4, 3, 6, 5, . . . , 2 · k , 2 · k − 1, . . . , 2 · l , 2 · l − 1 has exactly 2l increasing subsequences
of length l. (From each twin-pair you could pick exactly one element.) We now construct a sequence
with K longest increasing subsequences by writing K in base 2 by choosing l such that 2l ≥ K and
adding an increasing "collector rail" of the numbers x + 1, . . . , x + l where x � 2 · l to our sequence.
For the i-th twin pair, if the i-th bit is set, we put the collector number after the first element:
. . . , 2 · k , x + k , 2 · k − 1, . . . and if the i-th bit is not set, we put the collector number in front of
the whole pair: . . . , x + k , 2 · k , 2 · k − 1, The length of the longest increasing subsequence is
now l + 1. This means that any longest increasing subsequence has to contain some number of the
collector rail and some number of a twin pair. As all the numbers in the collector rail are larger than
the numbers in the twin-pair, each longest increasing subsequence has to start with some twin-pair
numbers and switch to collector rail numbers at some point. The number of subsequences entering
the collector rail at the number x + i is exactly 2i if the i-th bit was set in K and 0 otherwise. The
total number of longest increasing subsequences is thus K. Any leftover numbers due to n > 3 · l
can simply be appended as an increasing sequence of numbers bigger that all the previous numbers.
These numbers will be part in all the longest increasing subsequences at thus won’t chance the
number of them.
1 #include <iostream>
2 #include <vector>
3

4 using namespace std;
5

6 int main(int, char **) {
7 int T;
8 cin >> T;
9

10 for (int t = 1; t <= T; ++t) {
11 cout << "Case #" << t << ": ";
12

13 int N;
14 long long K;
15 cin >> N >> K;
16

25

Swiss Olympiad in Informatics

Solutions First Round 2017

17 // If K == 1, build the smallest permutation in order
18 // to have one increasing subsequence of length N.
19 if (K == 1) {
20 for (int i = 1; i <= N; i++)
21 cout << i << ' ';
22 cout << endl;
23 continue;
24 }
25

26 // Find the most significant bit set to 1 in K
27 // B := 1+floor(log2(K))
28 int B = 0;
29 while (K >= (1LL << B))
30 ++B;
31

32 // L,R are two fragments of the permutation to be concatenated
33 // afterwards.
34 // R will contain B-1 'twin' in the form (1+R_i ,R_i), with R_i
35 // increasing
36 // between
37 // pairs. This allows exactly 2^(B-1) increasing subsequences of length
38 // B-1.
39 // L will increasing subsequence of length at most B, and will be used
40 // to
41 // select
42 // bits from number K, to build appropriate amount of subsequences of
43 // length
44 // B.
45 //
46 // Specifically, if we add increasing sequence of M numbers to L, while
47 // the
48 // last one
49 // is smaller than R_M but larger than R_{M+1}, we will get exactly
50 // 2^(B-M-1) subs.
51 // of length B.
52 vector<int> L, R;
53 L.reserve(B);
54 R.reserve(B * 2);
55 int skipped_numbers_in_L = 0, next_number = 1;
56

57 for (int b = B - 1; b >= 0; --b) {
58 if (K & (1LL << b)) {
59 // This bit needs to be selected. There are already some numbers
60 // in L, we need to add C more, larger than everything in R so
61 // far
62 // to have exactly B-b numbers there.
63 for (int i = next_number;
64 i <= next_number + skipped_numbers_in_L; i++) {
65 L.push_back(i);
66 }
67 next_number += skipped_numbers_in_L + 1;
68 skipped_numbers_in_L = 0;
69 } else {
70 // This bit is not selected, remember that it was skipped
71 ++skipped_numbers_in_L;
72 }

26

Task dissertation

73

74 // Append 1+R_i and R_i. Those have to be the smallest unused
75 // numbers
76 // so that we cannot add any more increasing subsequences using
77 // these two
78 // numbers
79 if (b > 0) {
80 R.push_back(next_number + 1);
81 R.push_back(next_number);
82 next_number += 2;
83 }
84 }
85

86 // Now we connect all bits together. First, we may have some unused
87 // numbers
88 // from 1..N,
89 // and those will be larger than anything in L or R. Put them in
90 // decreasing
91 // order in the
92 // front of the solution, so that they can only be part of a increasing
93 // subsequence of
94 // length 1.
95 cerr << "used: " << next_number - 1 << "\n";
96 for (int i = N; i >= next_number; i--)
97 cout << i << ' ';
98

99 // Now, append L - up to B numbers used to select bits from K.
100 for (size_t i = 0; i < L.size(); ++i)
101 cout << L[i] << ' ';
102

103 // At last, add everything from B
104 for (size_t i = 0; i < R.size(); ++i)
105 cout << R[i] << ' ';
106

107 // Each subsequence of length B now looks as follows -
108 // select M lowest numbers from L, and then B-M increasing numbers from
109 // R,
110 // each
111 // number coming from a 'twin' pair. This gives 2^(B-M) sequences of
112 // length
113 // B.
114 //
115 // Note that if we don't pick the smallest numbers from L, or if we pick
116 // more than
117 // M, the largest of them will be larger than both the numbers in the
118 // first
119 // pair
120 // we used from R. Similar observation holds for selecting numbers from
121 // R.
122 cout << endl;
123 }
124 }

27

Swiss Olympiad in Informatics

Solutions First Round 2017

Subtask 5: Reconstruction with Few Pages (30 points)

The solutions from the previous subtask achieves C � 3. This however is not optimal. By using a
base b instead of base 2 one can get C �

(b+1)
log2(b)

with for b � 4 results in C � 2.5. This is the best
solution that we are aware of, but we haven’t got a proof that this is optimal.
What we can prove is that C ≥ 3

log2 3 . For this we want to bound the number K of Longest
increasing subsequences of a permutation of length N . Let L be the length of a longest increasing
subsequence and ai be the number of pages p, for which the longest increasing subsequence ending
in p has length i. The number of longest increasing subsequences is bounded by

∏L
i�1 ai , as every

longest increasing subsequence has length L and the length of the j-th element of the longest
increasing subsequence has a longest increasing subsequence ending with it of length j. All longest
increasing subsequences consist of picking one page from each set of pages having the same length
of longest increasing subsequence ending with them. As there are ai numbers in the i-th such
set there are exactly

∏L
i�1 ai such possibilities. Now suppose there exist two indices i , j such that

a j < ai − 1. If we replace a j with a j + 1 and replace ai with ai − 1, we increase the product
∏L

i�1,
since

(ai − 1) · (a j + 1) � ai · a j + ai − a j − 1 > ai · a j

we can thus assume that max ai −min ai ≤ 1, since we only increase
∏

ai this way. Let a � min ai .
We can rewrite the product to ∏

ai � ax · (a + 1)y

for x and y such that a · x + (a + 1) · y � N . Thus∏
ai � a

x
a · (a + 1)N−x

a+1

where 0 ≤ x ≤ N . This function is convex in x and thus is maximal when x � 0 or x � N . Let b � a
if this is maximal at x � N and b � a + 1 otherwise. We can rewrite to∏

ai ≤ b(N/b)

This function has a minimum at b � e. As b is an integer we get a maximum at b � 3. What we
have proven is that K �

∏
ai ≤ b(N/b) ≤ 3(N/3). By taking the logarithm we get

3
log2(3)

≤ N
log2(K)

which is the lower bound C ≥ 3
log2(3)

.
If anyone can prove a tighter lower bound or find a better construction, let us know at info@soi.ch!

1 /*
2 * prints (base+1) * log_base(K) numbers, for any integer base>=2
3 * this achieves C=2.5 when base=4
4 */
5 #include <bits/stdc++.h>
6

7 using namespace std;
8

9 // applies coordinate compression to transform v into a permutation of the
10 // numbers 1 to n.
11 void compress(vector<int> &v) {

28

Task dissertation

12 vector<int> v2 = v;
13 sort(v2.begin(), v2.end());
14 for (auto &e : v)
15 e = lower_bound(v2.begin(), v2.end(), e) - v2.begin() + 1;
16 }
17

18 int main() {
19 const int base = 4;
20 int T;
21 cin >> T;
22 for (int tt = 1; tt <= T; ++tt) {
23 cout << "Case #" << tt << ": ";
24 int N;
25 long long K;
26 cin >> N >> K;
27 vector<int> ret;
28

29 int b = 1, t = N * base;
30

31 for (long long basePow = 1; basePow <= K; basePow *= base) {
32 for (int i = 0; i <= base; ++i) {
33 // base construction for powers of base
34 if (i != 0)
35 ret.emplace_back(b + base - i);
36 if (i == (K / basePow) % base) {
37 // collector rail
38 ret.emplace_back(t++);
39 }
40 }
41 b += base;
42 }
43 // fill up with large increasing numbers
44 while ((int)ret.size() < N)
45 ret.emplace_back(N * N + (int)ret.size());
46 // compress to permutation
47 compress(ret);
48 copy(ret.begin(), ret.end(), ostream_iterator<int>(cout, " "));
49 cout << "\n";
50 }
51 }

29

Swiss Olympiad in Informatics

Solutions First Round 2017

6 Submarine
Subtask 1: Find a path (20 points)

In this subtask you had to guide the ships to the destination and the submarines didn’t attack.
To find a path from start points to destinations we use BFS. You can do this either from each

start point or from each destination and then store the found paths. There are mainly two things to
look out for: choose only start points that have a path to a destination and make sure that there are
never two ships on the same position.

Subtask 2: Destroy all ships (25 points)

In this subtask you controlled the submarines and you had to destroy all ships.
As the ships move at random there was no point in defending any particular destination. As

it turns out it’s enough to move randomly and attack all found ships. Basically you can copy the
sample bot.

Subtask 3: Creativity Tournament (50 points)

As this is the creativity task, there are many possible solutions and we don’t know the best one
either.

We played several rounds on several maps to determine the quality of the submitted algorithms.
According to those games we calculated a ranking and awarded points according to it.

Unfortunately most submitted programs contained more or less serious bugs we had to fix before
we were able to test the algorithms. Depending on what we had to fix we deducted some points.

For the base score before the deduction we used the following table:

• 50 points for ranks 1, 2 and 3
• 40 points for ranks 4 and 5
• 25 points for ranks 6 and 7
• 20 points for ranks 8 and 9
• 15 points for rank 10
• 10 points for rank 11
• 5 points for rank 12

30

