
Second Round Practical

Solution Booklet

Swiss Olympiad in Informatics

March 10–13, 2017

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task allotment

Allotment
There are N flower packets with a known number of seeds per packet. The task was to buy some
packets and sow them inside a w × h garden with area at most A. One column of the garden can
only contain seeds of one packet and the height of that column must be at least the number of
seeds in that packet. For some known subset of packets, w is the number of packets and h is
the maximum number of seeds inside the packets and we must have w · h ≤ A. The goal was to
maximize the number of different packets.
The key insight for this problem is: It is always better to take packets with less seeds. Why?

The only thing that counts in the end is the number of different packets. We are forced to plant
all of the chosen seeds, thus possibly needing a larger column for a packet with a large number
of seeds. We can keep the garden small by taking the small packets.
This brings us to an unoptimized, but correct algorithm: Take the smallest packet, calculate

the garden size and check if you can put it into an area at most A. If yes, take the next smallest
packet, and check the area. If you still have space, take the next smallest packet, etc.
To repeatedly take the smallest packet, we just sort the packets by size at the beginning. To

compute the maximum size of the chosen packets, we just take the size of the last one taken (all
previous packets are smaller). While verifying w · h ≤ A, we need to be careful for overflows –
use long long or divide both sides by w or h.

1 #include <iostream>
2 #include <vector>
3 #include <algorithm>
4 using namespace std;
5

6 int main() {
7 int a, n;
8 cin >> a >> n;
9 vector<int> s(n);

10 for (int i = 0; i < n; i++)
11 cin >> s[i];
12 sort(s.begin(), s.end());
13 int answer = 0;
14 for (int i = 0; i < n; i++)
15 if ((i+1) * (long long)s[i] <= a)
16 answer = i+1;
17 cout << answer << '\n';
18 }

1 from sys import stdin
2 a, n = map(int, stdin.readline().split())
3 answer = 0
4 for w, h in enumerate(sorted(map(int, stdin.readline().split())), 1):
5 if w*h <= a:
6 answer = w
7 print(answer)

2/12

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task meadow

Meadow

1 2 3 4 5 6 7 8 9 10

The picture to the right should pretty much explain this task. In words:
Given some forest boundary, select k rectangles that touch the bottom
and don’t intersect with each other, such that the enclosed area is as
large as possible. Furthermore, each rectangle can have a width of at
most t.
This task can be solved using dynamic programming.
Let’s define a magic function f that solves this task:

f (i , r) � max area covered by r rectangles up to position i.

What we’re trying now is to figure out how f looks like. Some values
of f are easy. For example if i � 0 there is no area to cover:

f (0, r) � 0

Also, if r � 0 there can’t be anything covered:

f (i , 0) � 0

Now assuming we know the solution for smaller i and r, we can
write down the following recurrence:

f (i , r) � max
(

f (i − 1, r), max
w∈{1,2,...,min(t ,i)}

{
f (i − w , r − 1) + w ·min{di−w+1 , di−w+2 , . . . , di}

})
What does this mean in words? We want to know the best way to put r rectangles in positions

from x � 0 to x � i. We know f (i′, r′) for all i′ < i and r′ < r.

• If the last rectangle doesn’t extend to the right, the answer is just f (i − 1, r).
• If the last rectangle does extend to the right, it has started at one of the positions i , i − 1, i −

2, . . . , i − t + 1 (assuming they are all ≥ 0).
Let’s look at a rectangle from i − w + 1 to i. The width of the area is w (we are not
looking at coordinates but at centers of grid tiles). The height is the minimum of all
di−w+1 , di−w+2 , . . . , di inside the rectangle.
To fill up the rest to the left of i − w + 1 we add f (i − w , r − 1) – the best solution for one
rectangle less in the remaining space.

What remains is to chose an order for the i , r so that we only access the ones we calculated
already. Doing two for-loops starting from 0 is perfectly fine.

1 #include <iostream>
2 #include <vector>
3 using namespace std;
4

5 int main() {
6 int n, k, t;
7 cin >> n >> k >> t;
8 vector<int> d(n);
9 for (int i=0; i<n; ++i)

3/12

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task meadow

10 cin >> d[i];
11 vector<vector<int> > DP(n, vector<int>(k+1));
12 for (int r=1; r<=k; ++r) {
13 for (int i=0; i<n; ++i) {
14 int value = i ? DP[i-1][r] : 0;
15 int h = d[i];
16 for (int w=1; w<=t && i-w>=0; ++w) {
17 h = min(h, d[i-w+1]);
18 value = max(value, DP[i-w][r-1] + h*w);
19 }
20 DP[i][r] = value;
21 }
22 }
23 cout << DP[n-1][k] << '\n';
24 }

1 from sys import stdin
2 n, k, t = map(int, stdin.readline().split())
3 d = [int(stdin.readline()) for _ in range(n)]
4 DP = [[0]*(k+1)]
5 for i in range(0, n):
6 v = DP[i].copy()
7 for r in range(1, k+1):
8 x = v[r]
9 m = d[i]

10 for j in range(0, min(i+1, t)):
11 m = min(m, d[i-j])
12 x = max(x, DP[i-j][r-1] + m*(j+1))
13 v[r] = x
14 DP.append(v)
15 print(max(DP[-1]))

4/12

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task eastereggs

Easter Eggs
Given a graph and two vertices a and b, you need to find a vertex c and two paths p � a , . . . , c
and q � b , . . . , c which are of equal length (|p | � |q |). Select c, p and q such that |p | (and thus |q |)
is as small as possible. In the story, the two vertices a and b are the starting points of Tim and
Tom, c is the point in which they meet, and p/q are the lists of hiding places.

Let’s first ignore the fact that we have to minimize |p | (or |q |) and just find two paths p and q of
equal length.

An observation one can make is that if two paths p � v1 , v2 , . . . , vk , c and q � w1 , w2 , . . . ,w` , c
meet, but are not of equal size, we can make one of them longer and one of them shorter:
p′ � v1 , v2 , . . . , vk−1 , vk , c , w` and q′ � w1 , w2 , . . . ,w`−1 , w` still meet at w` , but now |p′ | � |p |+1
and |q′ | � |q | − 1.
Can we use this trick to make any pair of paths have equal length? No, but it works if they

have the same parity (i.e. both are even or both are odd).
Therefore, we need to know the following for each vertex v:

• Is vertex v reachable from a by a path of odd length?
• Is vertex v reachable from a by a path of even length?
• Is vertex v reachable from b by a path of odd length?
• Is vertex v reachable from b by a path of even length?

Assuming we know that and we can find a vertex that is reachable by two paths of the same
parity from a and b, we have found a solution to the problem (we can then just apply the trick
from above to make both paths equal).
So what about the minimal solution? We could modify our list of questions to:

• What is the shortest path of odd length to go from a to v?
• What is the shortest path of even length to go from a to v?
• What is the shortest path of odd length to go from b to v?
• What is the shortest path of even length to go from b to v?

Will this find the minimal solution? Well yes, because there must be some c where both meet
and that c is reachable from a and b with paths form the same parity. For a minimal solution,
clearly both paths should be minimal.

Will we find all solutions with this approach? Assume there is some other solution where we
will go from a to c, but there exists a shorter path of the same parity. If we would take that one,
then it doesn’t have the same length as the one from b to c. However, we can use the trick from
above and find a c′ on the second path, such that a to c′ is of equal length as b to c′. This is a
better solution and we would have found it with our approach.

To implement this idea, we could do a BFS with DP (two states, reachable with odd length or
even length) and run it once from a and once from b.
However, there is a nice trick to avoid DP: We just duplicate the graph. Any node vi will be

split into ei and oi (even and odd). An edge from vi to v j in the original graph will be converted
to two edges: one from ei to o j and one from oi to e j . If we start on one of the even nodes, we
have to go to one of the odd nodes next, then back to one of the even nodes, etc. Thus computing
the shortest even/odd paths will be just a regular BFS on the modified graph.

5/12

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task eastereggs

1

2

3

4 5

�⇒

1

2

3

4 5

1

2

3

4 5

There is another trick to simplify our code: We just look for the shortest path of even length
from a to b. Since the length is divisible by 2, we know that we can split it up into two parts of
the same length. This makes us only needing one DFS pass.

1 #include <iostream>
2 #include <algorithm>
3 #include <queue>
4 using namespace std;
5

6 int main() {
7 int n, m, s, t;
8 cin >> n >> m >> s >> t;
9 vector<vector<int> > g(2*n);

10 for (int i=0; i<m; ++i) {
11 int a, b;
12 cin >> a >> b;
13 --a;
14 --b;
15 g[2*a].push_back(2*b+1);
16 g[2*b].push_back(2*a+1);
17 g[2*a+1].push_back(2*b);
18 g[2*b+1].push_back(2*a);
19 }
20 vector<int> d(2*n, -1);
21 queue<int> q;
22 q.push(2*(s - 1));
23 d[q.front()] = 0;
24 while (!q.empty()) {
25 int v = q.front();
26 q.pop();
27 if (v == 2*(t - 1)) {
28 cout << d[v]/2 << '\n';
29 return 0;
30 }
31 for (int w : g[v]) {
32 if (d[w] == -1) {
33 d[w] = d[v] + 1;
34 q.push(w);
35 }
36 }
37 }
38 cout << "IMPOSSIBLE\n";
39 }

1 from sys import stdin
2 from collections import deque
3 read = lambda: map(int, stdin.readline().split())

6/12

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task eastereggs

4 n, m, s, t=read()
5 g=[[] for _ in range(2*n)]
6 for _ in range(m):
7 a, b=map(lambda x: x-1, read())
8 for i in range(2):
9 g[2*a+i].append(2*b+(not i))

10 g[2*b+i].append(2*a+(not i))
11 q=deque()
12 d=[-1]*(2*n)
13 q.append(2*(s-1))
14 d[q[0]]=0
15 while q:
16 v = q.popleft()
17 if v == 2*(t-1):
18 print(d[v]//2)
19 exit(0)
20 for w in g[v]:
21 if d[w] == -1:
22 d[w] = d[v] + 1
23 q.append(w)
24 print("IMPOSSIBLE")

7/12

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task meteo

Meteo
For a 3D-room of cubes of 1 × 1 × 1 meters, answer a series of the following request types:

• Query: M x1, y1, z1 x2, y2, z2: Print the average of the values inside the cuboid with corners
(x1 , y1 , z1) and (x2 , y2 , z2).

• Update: C x, y, z, d: Set the value of (x , y , z) to d

While the full solution is quite complicated, there were some easy subtasks:

Group 1 (25 points): The limits were small enough that a brute-force could solve this subtask.
Just keep trackof all values in anarray (int values[10][10][10]orvector<vector<vector<int>>>).
To calculate the average, just sum up all relevant values and divide by the number of elements.

Group 2 (25 points): In this subtask there were no updates (requests of type “C”). This means
that the sum can be calculated using prefix sum.

As described on 2H, we can use prefix sum to calculate the sum inside a 2D rectangle: Let ai j
be the value at (i , j) and assume we have access to a fast prefix function:

s(x , y) �
x∑

i�0

y∑
j�0

ai j

Then, the sum between (x0 , y0) and (x1 , y1) is
x1∑

i�x0

y1∑
j�y0

ai j � s(x1 , y1) − s(x0 − 1, y1) − s(x1 , y0 − 1) + s(x0 , y0).

You don’t need to know this formula, just figure it out yourselves by solving some example:
The sum between (4, 1) and (6, 4) looks like s(6, 4) − s(4, 4) − s(6, 1), but we have subtracted the
lower left rectangle twice, so we need to add it once and get s(6, 4) − s(4, 4) − s(6, 1) + s(4, 1).

0 1 2 3 4 5 6
0

1

2

3

4

x

y

But since are interested in 3D and not 2D, we need to generalize this formula. After a bit of
thinking one comes up with this:

x1∑
i�x0

y1∑
j�y0

z1∑
k�z0

ai jk �
(
s(x1 , y1 , z1)

− s(x0 − 1, y1 , z1) − s(x1 , y0 − 1, z1) − s(x1 , y1 , z0 − 1)
+ s(x0 − 1, y0 − 1, z1) + s(x0 − 1, y1 , z0 − 1) + s(x1 , y0 − 1, z0 − 1)
− s(x0 − 1, y0 − 1, z0 − 1)

)
.

8/12

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task meteo

So how to precompute s(x , y , z) efficiently? We just use the equality ax yz �
∑x

i�x
∑y

j�y
∑z

k�z ai jk

to get:

x∑
i�x

y∑
j�y

z∑
k�z

ai jk �
(
s(x , y , z)

− s(x − 1, y , z) − s(x , y − 1, z) − s(x , y , z − 1)
+ s(x − 1, y − 1, z) + s(x − 1, y , z − 1) + s(x , y − 1, z − 1)
− s(x − 1, y − 1, z − 1)

)
,

or solved for s(x , y , z),

s(x , y , z) �ai jk

+ s(x − 1, y , z) − s(x , y − 1, z) − s(x , y , z − 1)
− s(x − 1, y − 1, z) + s(x − 1, y , z − 1) + s(x , y − 1, z − 1)
+ s(x − 1, y − 1, z − 1)

)
.

1 #include <iostream>
2 #include <vector>
3 using namespace std;
4

5 int main() {
6 cin.tie(0);
7 ios::sync_with_stdio(false);
8

9 int l, w, h; cin >> l >> w >> h;
10 vector<vector<vector<long long> > >
11 prefixsum(l+1, vector<vector<long long> >(w+1, vector<long long>(h+1)));
12

13 auto query = [&](int x0, int y0, int z0,
14 int x1, int y1, int z1) {
15 return (- prefixsum[x0][y0][z0]
16 + prefixsum[x1][y0][z0] + prefixsum[x0][y1][z0] + prefixsum[x0][y0][z1]
17 - prefixsum[x0][y1][z1] - prefixsum[x1][y0][z1] - prefixsum[x1][y1][z0]
18 + prefixsum[x1][y1][z1]);
19 };
20

21 for (int i=0; i<h; ++i)
22 for (int j=0; j<w; ++j)
23 for (int k=0; k<l; ++k) {
24 int x;
25 cin >> x;
26 prefixsum[k+1][j+1][i+1] = x - query(k, j, i, k+1, j+1, i+1);
27 }
28

29 int q; cin >> q;
30 while (q--) {
31 char t;
32 cin >> t;
33 if (t == 'C') {
34 int x, y, z, d;
35 cin >> x >> y >> z >> d;
36 continue;

9/12

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task meteo

37 } else {
38 int x1, y1, z1, x2, y2, z2;
39 cin >> x1 >> y1 >> z1 >> x2 >> y2 >> z2;
40 cout << query(x1, y1, z1, x2, y2, z2)/(double)((x2-x1)*(y2-y1)*(z2-z1)) << '\n';
41 }
42 }
43 }

1 from sys import stdin
2

3 l, w, h = map(int, stdin.readline().split())
4 prefixsum = [[[0]*(h+1) for _ in range(w+1)] for _ in range(l+1)]
5

6 def query(x0, y0, z0, x1, y1, z1):
7 return sum((s0*s1*s2*prefixsum[x][y][z])
8 for s0, x in ((-1, x0), (1, x1))
9 for s1, y in ((-1, y0), (1, y1))

10 for s2, z in ((-1, z0), (1, z1)))
11

12 for i in range(h):
13 for j in range(w):
14 for k, x in enumerate(map(int, stdin.readline().split())):
15 prefixsum[k+1][j+1][i+1] = x - query(k, j, i, k+1, j+1, i+1)
16

17 for _ in range(int(stdin.readline())):
18 q = tuple(stdin.readline().split())
19 if q[0]=='C':
20 continue
21 else:
22 x1, y1, z1, x2, y2, z2 = map(int, q[1:])
23 print(query(x1, y1, z1, x2, y2, z2)/((x2-x1)*(y2-y1)*(z2-z1)))

Group 1 + 2 (50 points): Clearly both approaches from before can be combined for 50 points in
total.

All groups (100 points): Let’s look at the full solution. The difficult part is to have fast queries
and updates together (the brute-force solution has fast updates and slow queries, the prefix sum
solution fast queries and slow updates).

For 1D, a known data structure that solves this and many more problems is a segment trees. A
slightly easier data structure that does the same for prefix sums is the fenwick tree (sometimes
called BIT for binary indexed tree).

A fenwick tree on n elements is an array of length n + 1, where the i-th entry stores the sum of
all elements from indices i − 2k + 1 to i (including i) where 2k is the largest power of two that
divides i. This means that e.g. the 5-th entry stores only a5, the 6-th entry stores a5 + a6, the 8-th
entry stores a1 + a2 + . . . + a8.
Look at this picture:

10/12

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task meteo

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
The y coordinate represents the range of each vertex (first (lowest) level: divisible by 1, second

level: divisible by 2, third level: divisible by 4, etc.). To get the sum of e.g. a1 + . . . + a11, we have
to sum up a11 + (a9 + a10) + (a1 + . . . + a8), which means we add the values of vertices 11, 10 and
8. Those are exactly the parents of a11.
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

This mirrored tree represents the nodes we have to update if we change one value. If we add x
to a11, we not only have to update vertex 11, but also vertex 12 (which stores a11 + a12) and vertex
16 (which stores a1 + . . . + a16.

The reason this tree is so useful is that is is very easy to move from a node to its parent: In
the first tree, the parent of i is i − (i&(−i)) (where & is the bitwise and), in the second tree, the
parent of i is i + (i&(−i)). (Strictly confirming to the C++ standard, i − (i&(−i)) should be written
as (i&(i − 1)) and i + (i&(−i)) as (x |(x − 1)) + 1 because bit operations with negative numbers
don’t always behave the same – however on machines with two-complement the former bit-tricks
usually work and are better to remember because of their symmetry.)
So how to make this fenwick tree work for 2D? We take the tree from before but instead

of storing an integer we store another fenwick tree. The j-th element of the i-th fenwick tree
represents s(i , j). The updates and queries will be like before, except on the first layer we add the
value to the j-th element of the lower segment tree and we query the j-th element. For 3D this is
pretty much the same.

In case this introduction to Fenwick trees was too fast, there are other tutorials online, including
2D:
https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/

Below is only the Python code. The C++ implementation is left as an exercise for the reader.

1 from sys import stdin
2

3 class FenwickTree3D:
4 def __init__(self, x, y, z):
5 self.x, self.y, self.z = x+1, y+1, z+1

11/12

https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/

Swiss Olympiad in Informatics
Second Round Practical, 2017 Task meteo

6 self.d = [[[0]*self.z for _ in range(self.y)] for _ in range(self.x)]
7

8 def query(self, x, y, z):
9 s = 0

10 i = x
11 while i:
12 j = y
13 while j:
14 k = z
15 while k:
16 s += self.d[i][j][k]
17 k -= k&-k
18 j -= j&-j
19 i -= i&-i
20 return s
21

22 def query_rect(self, x1, x2, y1, y2, z1, z2):
23 get = self.query
24 return (get(x2, y2, z2)
25 - get(x1, y2, z2) - get(x2, y1, z2) - get(x2, y2, z1)
26 + get(x1, y1, z2) + get(x1, y2, z1) + get(x2, y1, z1)
27 - get(x1, y1, z1))
28

29 def add(self, x, y, z, v):
30 i = x+1
31 while i < self.x:
32 di = self.d[i]
33 j = y+1
34 while j < self.y:
35 dij = di[j]
36 k = z+1
37 while k < self.z:
38 dij[k] += v
39 k += k&-k
40 j += j&-j
41 i += i&-i
42

43 def set(self, x, y, z, v):
44 self.add(x, y, z, v - self.query_rect(x, x+1, y, y+1, z, z+1))
45

46

47 l, w, h = map(int, stdin.readline().split())
48 ft = FenwickTree3D(l, w, h)
49 for k in range(h):
50 for j in range(w):
51 for i, x in enumerate(map(int, stdin.readline().split())):
52 ft.add(i, j, k, x)
53 for _ in range(int(stdin.readline())):
54 q=tuple(stdin.readline().split())
55 if q[0]=='C':
56 x, y, z, v = map(int, q[1:])
57 ft.set(x, y, z, v)
58 else:
59 x1, y1, z1, x2, y2, z2 = map(int, q[1:])
60 print(ft.query_rect(x1, x2, y1, y2, z1, z2)/((x2-x1)*(y2-y1)*(z2-z1)))

12/12

	Allotment
	Meadow
	Easter Eggs
	Meteo

