DFS

Depth First Search

Joél Mathys
2017-10-14

Swiss Olympiad in Informatics

Introduction

DFS Introduction

e Depth First Search

e graph traversal

e applications

e graph coloring
e component counting

Repetition

Repetition

graph traversal components adjacency list

DFS Algorithm

oA B
Ejﬂmﬂlﬂtﬁﬁ '

Escape strategy

.

fix red string

o e

B
-

e know way back

draw red points

e know where we've been

visit neighbors

return if dead end or marked

= take new path - repeat unless nothing new

2
=3
€
<
X
)

<=

s
c

‘=
>

)

i

DFS Implementation

e determine if end reachable
e setup datastructures

e visited < red bucket

e dfs stack < red string

visited = [False] % n
def dfs(current):

DFS Implementation

e enter new node / room
e check if we were already here

e return < follow string

def dfs(current):
if visited[current]:

return

visited [current] = True

DFS Implementation

e visit the neighbors ﬁ

for neighbor in graph[current]:
dfs(neighbor)

DFS Implementation

e look for exit

A

dfs(start)
if visited[end]:
print("can.reach.it!")

DFS Implementation

visited = [False] * n # setup datastructure

def dfs(current):

if visited[current] # been there?

return
visited [current] = True #mark with red spot
for neighbor in graph[current]: # check

dfs(neighbor) # neighbors

end of dfs function
dfs(start)
if visited[end]: # check target

print (” 1

can_reach._it!")

DFS Analysis

e memory:
e graph, visited Array
o — O(n)

e runtime:

e visit each node
e walk over each edge
e = O(n+m)

DFS Applications

Applications

paths components coloring

O

13

Graph coloring

coloring is hard!

special case for two

e place mice at a table

prelim.soi.ch

e passports task

14

DFS Implementation

e setup datastructures

e visited|]

e color[] (blue=1, red = 2) ﬁ
visited = [False] % n
color = [0] % n

def dfs(current, col):

19

DFS Implementation

e enter new node

e check if we were already here ﬁ

def dfs(current, col):
if visited[current]:

return True
visited [current] = True

20

DFS Implementation

e paint node blue or red

e determine color for neighbors

visited [current] = True

color[current] = col
ncol =1
if col = 1:
ncol = 2
else:
ncol =1

21

DFS Implementation

e visit the neighbors

e check for conflict! ﬁ

for neighbor in graph[current]:

if color[neighbor] = col:

return False
if not dfs(neighbor, ncol):
return False

return True

22

DFS Implementation

e color all nodes

for node in range(n):
if not dfs(graph, node, 1):
print("no_coloring._possible™)

23

DFS Implementation

visited = [False] = n
color = [0] * n

def dfs(graph, current, col):
if visited [current]:
return True

visited [current] = True
color[current] = col
ncol =1
if col = 1:
ncol = 2
else:
ncol =1
for neighbor in graph[current]:
if color[neighbor] = col:
return False
if not dfs(graph, neighbor, ncol):
return False
return True
end of dfs function
for node in range(n):
if dfs(graph, node, 1) = False:

print("no_coloring_possible™)

24

e continue walking as long
as you see new nodes
= depth first!

e standard way to explore graph

e many applications
coloring, components, ...

25

