
Graph Handout – SOI Workshops 2017
Graph Theory

0

1

2

3

4 5

6

Graph G = (V,E)
Vertices V = {0, 1, 2, 3, 4, 5, 6}
Edges E = {(0, 1), (1, 2), (2, 3), (2, 0), (5, 6)}
Number of vertices: n = |V | = 7
Number of edges: m = |E| = 5

Terms and Definitions:
• Two vertices are adjacent if they are con-
nected with an edge. E.g. 2 is adj. to 3.

• The vertices adjacent to a vertex are called its
neighbors. E.g. N(2) = {0, 1, 3}.

• The degree of a vertex is the number of its
neighbors. E.g. d(2) = 3.

• A sequence of vertices where two subsequent
vertices are connected by an edge is called a
walk. E.g. 0–2–3–2–1.

• A walk where each edge and each vertex is
traversed at most once is called a path. E.g.
0–1–2–3.

• A path that starts and ends at the same ver-
tex is called a cycle (the last vertex doesn’t
count to the path). E.g. 0–1–2–0.

• Two vertices are connected if there exists a
path starting at one and ending at the other.

• A graph is connected if all its vertices are
connected. E.g. G is not connected.

• A connected component is maximal con-
nected subgraph. E.g. C0 = {0, 1, 2, 3}.

• The length of a path is the number of edges;
or one less than the number of vertices.

• A shortest path between two vertices is a
path with minimal length. E.g. 0–2–3.

• The distance between two vertices is the
length of a shortest path. E.g. dist(0, 3) = 2.

Special types of graphs:
• Weighted graphs: Edges have a weight
(length, duration, cost, capacity, etc.).

• Directed graphs: Edges only go in one direc-
tion (one-way streets, dependencies, etc.).

• Trees: A connected graph without cycles.
Has n vertices and n − 1 edges. Between any
two vertices there is exactly one path.

Adjacency List
For each vertex, store the list of its neighbors. Uses
O(n+m) memory to store the graph.
graph = [

[1, 2], [0, 2], [0, 1, 3],
[], [6], [5],

]

Reading Graphs
n, m = map(int, input().split())
graph = [[] for _ in range(n)]
for _ in range(m):

a, b = map(int, input().split())
g[a].append(b)
g[b].append(a)

BFS
Breath First Search: Visit all reachable vertices in
order of their distance to the start node.
Asymptotic runtime: O(n+m), memory usage: O(n)
from collections import deque

graph = ...
dist = [None for _ in range(n)]
q = deque([start])
dist[start] = 0
while q:

v = q.popleft()
d = dist[v]
for w in graph[v]:

if dist[w] is None:
dist[w] = d + 1
q.append(w)

DFS
Depth First Search: Visit all reachable vertices re-
cursively.
Asymptotic runtime: O(n+m), memory usage: O(n)

import sys
sys.setrecursionlimit(10**9)

graph = ...
visited = [False for _ in range(n)]
def dfs(v):

if visited[v]:
return

visited[v] = True
for w in graph[v]:

dfs(w)

dfs(start)

Floyd-Warshall
Compute the shortest distance between any two
vertices in O(n3) with memory usage: O(n2)

Adjacency Matrix: A n× n list where entry [i][j] is
the length of the edge between those vertices.

inf = 10**9
G = [[inf for _ in range(n)]

for _ in range(n)]
for v in range(n):

G[v] = 0
for a, b, weight in edges:

G[a][b] = weight
G[b][a] = weight

All-pairs shortest path DP:

DP = G
for k in range(n):

for i in range(n):
for j in range(n):

DP[i][j] = min(DP[i][j],
DP[i][k] + DP[k][j])

	Graph Theory
	Adjacency List
	Reading Graphs
	BFS
	DFS
	Floyd-Warshall

