
Handout – Functions and Scopes
Guideline
Always avoid code duplication as much as possible! Whenever
you do the same thing many times, don’t copy-paste, make a
function and call it!
This helps you avoid having to fix something in many different
places and therefore reduces the risk of mistakes.

Creation of a basic function
A function is declared out of main()’s code block and has a
type, a name, arguments and its own code block. It returns a
value using the return instruction.
type name(type1 arg1, type2 arg2, ...) {

...
return ...;

}

Arguments
A C++ function can have 0, 1 or more arguments. In the
function, they can be used like normal variables that would be
declared at the very beginning of the function:
int square(int x) {

return x*x;
}

Return instructions
Functions can have several return instructions, so the
function works differently according to some conditions. Once
the program reaches a return, it exits the function, does not
execute the rest of its code and returns the due value.
bool isMultiple(int x, int y) {

if(x % y == 0) {
return true;

}
return false;

// no need to use 'else' because
// the function has already
// returned if we've entered the if structure
}

Basic template
#include <iostream> // can replace all inclusions
#include <algorithm> // with one
#include <vector> // #include <bits/stdc++.h>
#include <numeric> // when not on mac
#include <tuple>
#include <utility>
// use standard library without "std::"
using namespace std;

#define int int64_t // use 64-bits ints

// main function, is always executed first
// put your code inside
signed main() {

// input/output optimization
ios::sync_with_stdio(false);
cin.tie(0);
// your code here...

}

Instructions
Instructions always end with a semicolon and are executed
from top to bottom. Here are some useful instructions:

• Declare variable x of type ’t’: t x;
• You can declare several variables at the same time and
assign them a value directly: int a=10, b;

• Assign a new value to an already declared variable:
a = 15;

• You can’t use the same name for two variables (more on
this in a later lecture).

Some types
• int: signed integers (can be negative). Use

#define int int64_t to use 64-bit integers or use
long long.

• unsigned long long: 64-bit positive integers (when
normal int64_t or long long are not enough).

• double: Floating point numbers.
• bool: Boolean truth values: true or false.
• char: Characters. Use single inverted commas, for
example char c = 'a';

• string: Strings of characters. Use quotation marks, for
example string s = "Hello, world";

Input and output
Get the input using cin:
int a, b;
cin >> a >> b;
Use cout in order to print to the output. Printing '\n' creates
a new line.
int a = 1, b = 2;
cout << "a+b: " << a+b << '\n'; // Prints "a+b: 3".

Operations on integers
Standard operations:

• a+b: addition.
• a-b: substraction.
• a*b: multiplication.

• a/b: integer division (e. g. 5/3=1).
• a%b: rest of the integer division of a by b (p. ex. 5%3=2).
Also known as ’modulo’.

Pay attention to operator precedence. Multiplications, divisions
and modulos are executed before additions and substractions.
Operations with the same precedence are executed from left
to right.
Use parentheses to force another order of operations:
(a+b)*c-d/(e%(f*a)).

Comments
Make your code more readable (also when you’re the only one
reading it) by using comments, starting by ’//’ and ignored by
the compiler:
cout << (h2-h1)/(x2-x1); // outputs the slope

Conditionals
You can use conditional expressions to control what your
program does according to the truth value of some expression.
In order to do that, use the if structure.
Create a block of code between brackets { ... } in order to
determine which instructions are executed when the condition
is met.
if(condition) {

// executed if condition is true
...

}
Use else to specify what to do when the condition is not true:
if(condition) {

// executed if condition is true
...

} else {
// executed if condition is false
...

}
Conditions should be expressions returning a boolean value
(true or false). Here are some useful expressions that you
may use to test some conditions on two numbers a and b:

• a==b is true if a and b are equal and false otherwise.
• a!=b is true if a and b are not equal and false
otherwise.

• a<b is true if a is less than b and false otherwise.
• a>b is true if a is greater than b and false otherwise.
• a<=b is true if a is less or equal to b and false
otherwise.

• a>=b is true if a is greater or equal to b and false
otherwise.

You can combine boolean expressions using logical operators:

• !a is true if a is false and false otherwise.
• a&&b is true if both a and b are true and false
otherwise.

• a||b is true if either a or b is true and is false if both
are false.

Order of operations: ! > number operators > ==, != > || >

&&.
You can nest conditionals:
if(x==2) {

...
if(!a-3==5) {

...
}

...
}

More
To learn how to do more things in C++, follow the next
lectures, ask us and never hesitate to search on reference
sites such as https://en.cppreference.com/w/.

	Guideline
	Creation of a basic function
	Arguments
	Return instructions
	Basic template
	Instructions
	Some types
	Input and output
	Operations on integers
	Comments
	Conditionals
	More

