
SOI 2016
The Swiss Olympiad in Informatics





Perfect
solution

SOI
2016

How to write a perfect

solution

Before we present the tasks themselves to you, we would like to give you
some hints, how to write a good solution in theoretical track.

Unless stated otherwise in the task description, your solution should con-
tain:

• Source code of the program in Pascal, C, C++ or Java. Your program
will not be tested automatically, but reviewed manually by the organizers.
Hence your source code should contain a lot of comments and you should
write it as simple and elegant as possible. You do not need to spend much
time with handling input and output in a fancy way (it is not forbidden to
do so, but you will not score any more points; on the other hand, by doing
so you could make your solution less comprehensible to the organizers).

• Description of your solution. This does not mean just to translate the
source code to your mother tongue, but it should contain:

– Description of the basic idea of your solution, without any imple-
mentation details such as names of variables, procedures, etc.

– Description of the data structures used, e.g. what we need to store
in the memory during the computation and how we will do it.

– Description of the algorithm. Here you can use described data struc-
tures and mention important procedures, functions and variables.

• Reasoning about correctness. Unless stated otherwise, you do not need to
present a rigorous proof of correctness of you algorithm, but you should
provide solid arguments, why does your solution work. You should argue
about all aspects of your solution that are not immediately obvious. If
it is not obvious, you should include here also arguments why does your
program always terminate.

• Analysis of the time and space complexity of the algorithm. Analysis
of the time complexity gives an estimate on run time of the program,
depending on the size of the input. This time is proportional to the

1



SOI
2016

Perfect
solution

number of elementary operations of the program, such as assignment of a
single variable, comparison of two variables, arithmetical operations, etc.
We are usually interested in the run time in worst case, e.g. the maximal
possible run time of the algorithm. (Sometimes we analyse an average
run time). Analysis of the space complexity is analogical – it gives an
estimate on the size of used memory, depending on the size of the input.

In the complexity analysis, we are not interested in exact size of used
memory or exact running time (these are not only difficult to measure,
but varies significantly between various computers). Instead of that, we
focus on their rate of growth, expressed in the O-notation. We say that
function f(n) is O(g(n)) if it is possible to estimate f(n) by some multiple
of1 g(n).

For example, let program runs at most T (n) = 0.5n3 + 5n log n + 83 mi-
croseconds for an input of size n. Since 0.5n3 grows much faster than2

5n log n, we can say that the time complexity of the program is O(n3).
(Which we can read also as: “The running time of the algorithm is in
worst case asymptotically n3.”) As you can see, the multiplicative con-
stant 0.5 is not important in the complexity analysis. Other thing you
should notice is that if T (n) is O(n3), it is also O(n4), O(n7),. . . . In the
complexity analysis, we always try to give the smallest upper bound for,
e.g. the slowest growing function possible.

To analyse time and memory complexity in this way is usually quite easy.
For example, if a program contains two nested loops, each executing n
times, its time complexity is O(n2). As an another example, look at this
programs:

1Mathematically precise definition:
f(n) = O(g(n)) ⇔ ∃n0 ∈ N, c ∈ R+; ∀n > n0; f(n) ≤ c · g(n)
2Formally, limn→∞

0.5n3

5n logn
=∞.

2



Perfect
solution

SOI
2016

C:

int i,j,c;

int A[n];

void main() {

c = 0;

for (i=1; i<=n; i++)

for (j=i+1; j<=n; j++)

if (A[i]<A[j]) c++;

printf("%d\n", c);

}

Pascal:

var i,j,c:integer;

A:array[1..n] of integer;

begin

c := 0;

for i:=1 to n-1 do

for j:=i+1 to n do

if A[i]<A[j] then inc(c);

writeln(c);

end.

The first loop will be executed n− 1 times. The second loop is executed
n− i times for each execution of the first loop. So the comparison A[i] <

A[j] will be executed (n− 1) + (n− 2) + . . . + 1 = n(n−1)
2 times. So the

time complexity of this program is O(n2). As for the memory complexity,
the program uses 3 integer variables and one integer array of length n.
Hence the memory complexity of the program is O(n).

An Example

Task: You are given a sequence of n positive integer numbers. Write a program
that decides if sum of some consecutive numbers is equal to k.

Solution: The simplest solution is to consider all sequences of consecutive
numbers, compute their sum and compare it with k:

var n,k:integer; { Input values }

C:array[1..MaxN] of integer; { Input sequence }

i,j,z,sum:integer;

begin

for i:=1 to N do { For each subsequence }

for j:=i to N do

begin

3



SOI
2016

Perfect
solution

sum:=0;

for z:=i to j do sum:=sum+C[z]; { Compute its sum }

if sum=k then

begin

writeln(’Subsequence exists’); halt

end;

end;

writeln(’Subsequence does not exist’);

end.

This algorithm is easy to implement and it is easy to see that it is correct.3

But what is its time complexity? It is easy to see that the most frequently
executed operation is sum:=sum+C[z], and it is executed for each member of
each subsequence. Since there are O(n2) subsequences and each of them has
length O(n), the total time complexity of the algorithm is4 O(n3). Can we do
better?

It is easy to see that we do not need to recompute the sum of the considered
sequence over and over. The sum C[i] + . . . + C[j − 1] + C[j] can be obtained
just by adding value C[j] to the previously computed sum C[i] + . . .+C[j−1].
This idea leads us to the following modification of the program:

begin

for i:=1 to N do

sum := 0;

for j:=i to N do

begin

sum := sum + C[j]; { Now sum = C[i]+C[i+1]+...+C[j] }

if sum=k then

begin

writeln(’Subsequence exists’); halt

end;

end;

3Since it tests all possible consecutive subsequences, computes sum of each such subse-
quence and compares it to k.

4Moreover, this complexity bound is tight: if we compute the number of operations more
precisely, we obtain

n∑
i=1

n∑
j=i

j − i =
n3 − n

6

.

4



Perfect
solution

SOI
2016

writeln(’Subsequence does not exist’);

end.

This algorithm is more efficient – it requires only O(n2) operations.5

Next, we can do a small optimization: As soon as the variable sum exceeds
the value k the program can stop adding another numbers to it and proceed
to next loop of the outermost cycle (i.e. to the next value of i):

begin

for i:=1 to N do

sum := 0; j:=i;

while (sum<k) and (j<=n) do { End the loop as soon }

begin { as possible }

sum := sum + C[j];

if sum=k then

begin

writeln(’Subsequence exists’); halt

end;

j := j+1

end;

writeln(’Subsequence does not exist’);

end.

Unfortunately, the time complexity of this algorithm is the same as the
previous one: if k is large enough, our optimization does not save anything.
But now we can see another way of making the algorithm faster: After finishing
the while loop the previous algorithm throws away computed value sum = C[i]+
C[i+1]+. . .+C[j] and computes C[i+1]+C[i+2] . . . again. But since the while
loop terminates as soon as possible, we know that sum = C[i] + . . . + C[j] > k
and that C[i] + . . . + C[j − 1] < k. Hence also C[i + 1] + . . . + C[j − 1] < k.
So in the next iteration of the outermost loop, it is sufficient to start with the
subsequence C[i+1]+. . .+C[j], whose sum can be obtained just by subtracting
value C[i] from variable sum:

var n,k:integer; { Input values }

C:array[1..MaxN] of integer; { Input sequence }

i,j,sum:integer;

5This is again the best possible bound on complexity. The analysis is similar as in the
example in the introduction to complexity analysis.

5



SOI
2016

Perfect
solution

begin

sum:=0; i:=1; j:=1;

while (sum<>k) and (i<=n) do { Check if sum=k }

begin { after decrementing }

while (sum<k) and (j<=n) do { Enlarge the subsequence }

begin

sum := sum + C[j];

if sum=k then

begin

writeln(’Subsequence exists’); halt

end;

j := j+1

end;

sum := sum-C[i]; { Shrink the subsequence }

i := i+1;

end;

if sum=k then writeln(’Subsequence exists’)

else writeln(’Subsequence does not exist’);

end.

What is the time complexity of this algorithm? The outer while loop exe-
cutes at most n times, since variable i is incremented in each execution and it
is never decremented. The inner while loop can execute O(n) times for each
execution of the outer loop. But together it can execute only n times, since the
variable j is incremented in each execution and is never decremented. Hence
the overall time complexity of the algorithm is O(n). The memory complexity
is O(n), since the algorithm uses a constant number of integer variables and an
array of integers of length n. The correctness of the algorithm follows directly
from its description: we started with an obviously correct, but slow algorithm
(O(n3) time), optimized it to an optimal algorithm and we showed that each
of these optimizations was correct.

c©SOI Team, 2008, www.soi.ch

6


