
Introduction to Dynamic Programming

Florian Gatignon

November 4, 2018

Swiss Olympiad in Informatics



Table of Contents

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Renovate

3. Conclusion



Introduction

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Renovate

3. Conclusion



What is dynamic programming?

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Renovate

3. Conclusion



What is dynamic programming?

Dynamic programming is. . .

• not an algorithm

• a technique

for solving problems (in particular optimization

problems) more efficiently.



What is dynamic programming?

Dynamic programming is. . .

• not an algorithm

• a technique

for solving problems (in particular optimization

problems) more efficiently.



What is dynamic programming?

Dynamic programming is. . .

• not an algorithm

• a technique

for solving problems (in particular optimization

problems) more efficiently.



What is dynamic programming?

Dynamic programming is. . .

• not an algorithm

• a technique for solving problems (in particular optimization

problems)

more efficiently.



What is dynamic programming?

Dynamic programming is. . .

• not an algorithm

• a technique for solving problems (in particular optimization

problems) more efficiently.



What is dynamic programming: A guideline

Keep it simple, stupid!

• Doing the same thing twice is bad.

• When you use the same code more than once, you use a

function.

• Your program should also be lazy and avoid to compute what

it has already computed.



What is dynamic programming: A guideline

Keep it simple, stupid!

• Doing the same thing twice is bad.

• When you use the same code more than once, you use a

function.

• Your program should also be lazy and avoid to compute what

it has already computed.



What is dynamic programming: A guideline

Keep it simple, stupid!

• Doing the same thing twice is bad.

• When you use the same code more than once, you use a

function.

• Your program should also be lazy and avoid to compute what

it has already computed.



What is dynamic programming: A guideline

Keep it simple, stupid!

• Doing the same thing twice is bad.

• When you use the same code more than once, you use a

function.

• Your program should also be lazy and avoid to compute what

it has already computed.



What is dynamic programming

DP is a technique that you may use when you can divide a problem

into subproblems and build the full solution using the partial

solutions, but the subproblems overlap and you end up solving the

same subproblems over and over again.

A dynamic program avoids this problem by remembering what it

has already done and not computing it again.



What is dynamic programming

DP is a technique that you may use when you can divide a problem

into subproblems and build the full solution using the partial

solutions, but the subproblems overlap and you end up solving the

same subproblems over and over again.

A dynamic program avoids this problem by remembering what it

has already done and not computing it again.



A simple example: Fibonacci’s sequence

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Renovate

3. Conclusion



Fibonacci’s sequence

Fibonacci’s sequence can be defined as follows:
f0 = 0

f1 = 1

∀n ∈ N \ {0, 1}, fn = fn−1 + fn−2

Here are a few first values of the sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .



Fibonacci’s sequence

Fibonacci’s sequence can be defined as follows:
f0 = 0

f1 = 1

∀n ∈ N \ {0, 1}, fn = fn−1 + fn−2

Here are a few first values of the sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .



Fibonacci’s sequence: Intuitive algorithm

An intuitive way of computing values of the sequence would be:

int fib(int n) {

if(n==0) return 0;

if(n==1) return 1;

return fib(n-1) + fib(n-2);

}



Fibonacci’s sequence: The problem

If you try to run this code to compute f100, you’d have to be very

patient to get an answer.

Why?



Fibonacci’s sequence: The problem

If you try to run this code to compute f100, you’d have to be very

patient to get an answer.

Why?



Fibonacci’s sequence: The problem

f5

f4

f3

f1

f2

f0

f1

f2

f3

f2

f1f1

f0f0

f1

Our program computes the same values over and over.

Look at this tree:



Fibonacci’s sequence: The problem

f5

f4

f3

f1

f2

f0

f1

f2

f3

f2

f1f1

f0f0

f1

f5

Our program computes the same values over and over.

Look at this tree:

f5 → 1f5 → 1f5 → 1 time



Fibonacci’s sequence: The problem

f5

f4

f3

f1

f2

f0

f1

f2

f3

f2

f1f1

f0f0

f1

f4

Our program computes the same values over and over.

Look at this tree:

f4 → 1f4 → 1f4 → 1 time



Fibonacci’s sequence: The problem

f5

f4

f3

f1

f2

f0

f1

f2

f3

f2

f1f1

f0f0

f1

f3 f3

Our program computes the same values over and over.

Look at this tree:

f3 → 2f3 → 2f3 → 2 times



Fibonacci’s sequence: The problem

f5

f4

f3

f1

f2

f0

f1

f2

f3

f2

f1f1

f0f0

f1

f2 f2 f2

Our program computes the same values over and over.

Look at this tree:

f2 → 3f2 → 3f2 → 3 times



Fibonacci’s sequence: The problem

f5

f4

f3

f1

f2

f0

f1

f2

f3

f2

f1f1

f0f0

f1f1 f1 f1f1f1

Our program computes the same values over and over.

Look at this tree:

f1 → 5f1 → 5f1 → 5 times



Fibonacci’s sequence: The problem

f5

f4

f3

f1

f2

f0

f1

f2

f3

f2

f1f1

f0f0

f1

f0 f0f0

Our program computes the same values over and over.

Look at this tree:

f0 → 3f0 → 3f0 → 3 times



Fibonacci’s sequence: The problem

This example shows us that the number of operations increases at

the same speed as the results (the number of times we compute

each value are all increasing values of Fibonacci’s sequence)!

The Fibonacci sequence grows exponentially, so we have an

exponential running time...



Fibonacci’s sequence: The problem

This example shows us that the number of operations increases at

the same speed as the results (the number of times we compute

each value are all increasing values of Fibonacci’s sequence)!

The Fibonacci sequence grows exponentially, so we have an

exponential running time...



Fibonacci’s sequence: The solution

We can do (much) better.

We don’t need to compute anything

twice:

Just remember the previous values! We can first compute lower

values and then combine them to get the next one.



Fibonacci’s sequence: The solution

We can do (much) better. We don’t need to compute anything

twice:

Just remember the previous values! We can first compute lower

values and then combine them to get the next one.



Fibonacci’s sequence: The solution

We can do (much) better. We don’t need to compute anything

twice:

Just remember the previous values!

We can first compute lower

values and then combine them to get the next one.



Fibonacci’s sequence: The solution

We can do (much) better. We don’t need to compute anything

twice:

Just remember the previous values! We can first compute lower

values and then combine them to get the next one.



Fibonacci’s sequence: The solution

We can use already computed values to build the higher ones in

order:

f5

f4

f3

f2

f1

f0



Fibonacci’s sequence: The solution

We can use already computed values to build the higher ones in

order:

f5

f4

f3

f2

f1

0

f0 = 0f0 = 0f0 = 0



Fibonacci’s sequence: The solution

We can use already computed values to build the higher ones in

order:

f5

f4

f3

f2

1

0

f1 = 1f1 = 1f1 = 1



Fibonacci’s sequence: The solution

We can use already computed values to build the higher ones in

order:

f5

f4

f3

1

1

0

f2 = f1 + f0f2 = f1 + f0f2 = f1 + f0



Fibonacci’s sequence: The solution

We can use already computed values to build the higher ones in

order:

f5

f4

2

1

1

0

f3 = f2 + f1f3 = f2 + f1f3 = f2 + f1



Fibonacci’s sequence: The solution

We can use already computed values to build the higher ones in

order:

f5

3

2

1

1

0

f4 = f3 + f2f4 = f3 + f2f4 = f3 + f2



Fibonacci’s sequence: The solution

We can use already computed values to build the higher ones in

order:

5

3

2

1

1

0

f5 = f4 + f3f5 = f4 + f3f5 = f4 + f3



Fibonacci’s sequence: The solution

We compute all values (once) from f0 up to fn:

int fib(int n) {

vector<int> v;

v.push_back(0);

v.push_back(1);

for(int i = 2; i <= n; i++) {

v.push_back(v[v.size()-1] + v[v.size()-2]);

}

return v[n];

}

Our running time is now down to



Fibonacci’s sequence: The solution

We compute all values (once) from f0 up to fn:

int fib(int n) {

vector<int> v;

v.push_back(0);

v.push_back(1);

for(int i = 2; i <= n; i++) {

v.push_back(v[v.size()-1] + v[v.size()-2]);

}

return v[n];

}

Our running time is now down to...



Fibonacci’s sequence: The solution

We compute all values (once) from f0 up to fn:

int fib(int n) {

vector<int> v;

v.push_back(0);

v.push_back(1);

for(int i = 2; i <= n; i++) {

v.push_back(v[v.size()-1] + v[v.size()-2]);

}

return v[n];

}

Our running time is now down to O(n).



Fibonacci’s sequence: bonus solution

Bonus solution: you don’t need O(n) space.

int fib(int n) {

int a = 0, b = 1;

for(int i = 0; i < n; i++) {

swap(a,b);

b += a;

}

return a;

}

There’s an even better solution in O(log(n)), but it is not in our

scope for today.



Fibonacci’s sequence: bonus solution

Bonus solution: you don’t need O(n) space.

int fib(int n) {

int a = 0, b = 1;

for(int i = 0; i < n; i++) {

swap(a,b);

b += a;

}

return a;

}

There’s an even better solution in O(log(n)), but it is not in our

scope for today.



The recipe for creating a good DP solution

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Renovate

3. Conclusion



The recipe for creating a good DP solution

This was a simple example, but the same schemata apply to much

more complicated problems. We shall now generalize what we’ve

learned from Fibonacci’s sequence and apply it to other problems.



DP’s four steps

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Renovate

3. Conclusion



DP’s four steps

Here is a classic method of thinking about dynamic programming,

using four basic steps.

Think first, code second!

1. Define subproblems.

2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.

3. Find base case(s).

4. Which is the relevant subproblem?



DP’s four steps

Here is a classic method of thinking about dynamic programming,

using four basic steps.

Think first, code second!

1. Define subproblems.

2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.

3. Find base case(s).

4. Which is the relevant subproblem?



DP’s four steps

Here is a classic method of thinking about dynamic programming,

using four basic steps.

Think first, code second!

1. Define subproblems.

2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.

3. Find base case(s).

4. Which is the relevant subproblem?



DP’s four steps

Here is a classic method of thinking about dynamic programming,

using four basic steps.

Think first, code second!

1. Define subproblems.

2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.

3. Find base case(s).

4. Which is the relevant subproblem?



DP’s four steps

Here is a classic method of thinking about dynamic programming,

using four basic steps.

Think first, code second!

1. Define subproblems.

2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.

3. Find base case(s).

4. Which is the relevant subproblem?



DP’s four steps

Here is a classic method of thinking about dynamic programming,

using four basic steps.

Think first, code second!

1. Define subproblems.

2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.

3. Find base case(s).

4. Which is the relevant subproblem?



DP’s four steps and Fibonacci’s sequence

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Renovate

3. Conclusion



DP’s four steps and Fibonacci’s sequence

How does our solution for Fibonacci’s sequence match our four

steps?

1. Suproblems:

fi .

2. General formula:

fi = fi−1 + fi−2.

3. Base cases:

f0 = 0, f1 = 1.

4. Relevant suproblem:

fn.



DP’s four steps and Fibonacci’s sequence

How does our solution for Fibonacci’s sequence match our four

steps?

1. Suproblems:

fi .

2. General formula:

fi = fi−1 + fi−2.

3. Base cases:

f0 = 0, f1 = 1.

4. Relevant suproblem:

fn.



DP’s four steps and Fibonacci’s sequence

How does our solution for Fibonacci’s sequence match our four

steps?

1. Suproblems: fi .

2. General formula:

fi = fi−1 + fi−2.

3. Base cases:

f0 = 0, f1 = 1.

4. Relevant suproblem:

fn.



DP’s four steps and Fibonacci’s sequence

How does our solution for Fibonacci’s sequence match our four

steps?

1. Suproblems: fi .

2. General formula:

fi = fi−1 + fi−2.

3. Base cases:

f0 = 0, f1 = 1.

4. Relevant suproblem:

fn.



DP’s four steps and Fibonacci’s sequence

How does our solution for Fibonacci’s sequence match our four

steps?

1. Suproblems: fi .

2. General formula: fi = fi−1 + fi−2.

3. Base cases:

f0 = 0, f1 = 1.

4. Relevant suproblem:

fn.



DP’s four steps and Fibonacci’s sequence

How does our solution for Fibonacci’s sequence match our four

steps?

1. Suproblems: fi .

2. General formula: fi = fi−1 + fi−2.

3. Base cases:

f0 = 0, f1 = 1.

4. Relevant suproblem:

fn.



DP’s four steps and Fibonacci’s sequence

How does our solution for Fibonacci’s sequence match our four

steps?

1. Suproblems: fi .

2. General formula: fi = fi−1 + fi−2.

3. Base cases: f0 = 0, f1 = 1.

4. Relevant suproblem:

fn.



DP’s four steps and Fibonacci’s sequence

How does our solution for Fibonacci’s sequence match our four

steps?

1. Suproblems: fi .

2. General formula: fi = fi−1 + fi−2.

3. Base cases: f0 = 0, f1 = 1.

4. Relevant suproblem:

fn.



DP’s four steps and Fibonacci’s sequence

How does our solution for Fibonacci’s sequence match our four

steps?

1. Suproblems: fi .

2. General formula: fi = fi−1 + fi−2.

3. Base cases: f0 = 0, f1 = 1.

4. Relevant suproblem: fn.



How to implement a DP solution

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Renovate

3. Conclusion



Subproblem ordering

— Okay, I’ve followed your four steps. How do I use this to code a

solution now?



Subproblem ordering

Most subproblems can be solved only using other subproblems.

In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.

2. Compute other subproblems which only need base cases.

3. Continue computing further subproblems which are now

solvable.

4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming

problems. Sometimes, a viable ordering is obvious, sometimes it is

not; the best way to get used to it is to solve a lot of this kind of

problems.



Subproblem ordering

Most subproblems can be solved only using other subproblems.

In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.

2. Compute other subproblems which only need base cases.

3. Continue computing further subproblems which are now

solvable.

4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming

problems. Sometimes, a viable ordering is obvious, sometimes it is

not; the best way to get used to it is to solve a lot of this kind of

problems.



Subproblem ordering

Most subproblems can be solved only using other subproblems.

In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.

2. Compute other subproblems which only need base cases.

3. Continue computing further subproblems which are now

solvable.

4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming

problems. Sometimes, a viable ordering is obvious, sometimes it is

not; the best way to get used to it is to solve a lot of this kind of

problems.



Subproblem ordering

Most subproblems can be solved only using other subproblems.

In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.

2. Compute other subproblems which only need base cases.

3. Continue computing further subproblems which are now

solvable.

4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming

problems. Sometimes, a viable ordering is obvious, sometimes it is

not; the best way to get used to it is to solve a lot of this kind of

problems.



Subproblem ordering

Most subproblems can be solved only using other subproblems.

In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.

2. Compute other subproblems which only need base cases.

3. Continue computing further subproblems which are now

solvable.

4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming

problems. Sometimes, a viable ordering is obvious, sometimes it is

not; the best way to get used to it is to solve a lot of this kind of

problems.



Subproblem ordering

Most subproblems can be solved only using other subproblems.

In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.

2. Compute other subproblems which only need base cases.

3. Continue computing further subproblems which are now

solvable.

4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming

problems. Sometimes, a viable ordering is obvious, sometimes it is

not; the best way to get used to it is to solve a lot of this kind of

problems.



Subproblem ordering

Most subproblems can be solved only using other subproblems.

In what order can we compute subproblems?

1. Start with the base cases. We know the answer for those.

2. Compute other subproblems which only need base cases.

3. Continue computing further subproblems which are now

solvable.

4. When the relevant subproblem is found, return the result!

This is the hardest part of most difficult dynamic programming

problems. Sometimes, a viable ordering is obvious, sometimes it is

not; the best way to get used to it is to solve a lot of this kind of

problems.



Another example: Renovate

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Renovate

3. Conclusion



Renovate: Task statement

The problem is the following:

• You’re given a n ×m rectangle ”wall” made of zeroes and

ones as input.

• Your task is to renovate the wall.

• When there’s a one at some coordinate, the wall is in good

shape at this position, so you leave it as it is.

• When there’s a zero, this section of the wall is holey, and you

have two choices: turn it into a window, or rebuild a solid wall

at this place.

• Every window needs a full column of solid walls on both its

left and its right in order not to affect the stability of the wall.

• Maximize the number of windows!



Renovate: Task statement

The problem is the following:

• You’re given a n ×m rectangle ”wall” made of zeroes and

ones as input.

• Your task is to renovate the wall.

• When there’s a one at some coordinate, the wall is in good

shape at this position, so you leave it as it is.

• When there’s a zero, this section of the wall is holey, and you

have two choices: turn it into a window, or rebuild a solid wall

at this place.

• Every window needs a full column of solid walls on both its

left and its right in order not to affect the stability of the wall.

• Maximize the number of windows!



Renovate: Task statement

The problem is the following:

• You’re given a n ×m rectangle ”wall” made of zeroes and

ones as input.

• Your task is to renovate the wall.

• When there’s a one at some coordinate, the wall is in good

shape at this position, so you leave it as it is.

• When there’s a zero, this section of the wall is holey, and you

have two choices: turn it into a window, or rebuild a solid wall

at this place.

• Every window needs a full column of solid walls on both its

left and its right in order not to affect the stability of the wall.

• Maximize the number of windows!



Renovate: Task statement

The problem is the following:

• You’re given a n ×m rectangle ”wall” made of zeroes and

ones as input.

• Your task is to renovate the wall.

• When there’s a one at some coordinate, the wall is in good

shape at this position, so you leave it as it is.

• When there’s a zero, this section of the wall is holey, and you

have two choices: turn it into a window, or rebuild a solid wall

at this place.

• Every window needs a full column of solid walls on both its

left and its right in order not to affect the stability of the wall.

• Maximize the number of windows!



Renovate: Task statement

The problem is the following:

• You’re given a n ×m rectangle ”wall” made of zeroes and

ones as input.

• Your task is to renovate the wall.

• When there’s a one at some coordinate, the wall is in good

shape at this position, so you leave it as it is.

• When there’s a zero, this section of the wall is holey, and you

have two choices: turn it into a window, or rebuild a solid wall

at this place.

• Every window needs a full column of solid walls on both its

left and its right in order not to affect the stability of the wall.

• Maximize the number of windows!



Renovate: Task statement

The problem is the following:

• You’re given a n ×m rectangle ”wall” made of zeroes and

ones as input.

• Your task is to renovate the wall.

• When there’s a one at some coordinate, the wall is in good

shape at this position, so you leave it as it is.

• When there’s a zero, this section of the wall is holey, and you

have two choices: turn it into a window, or rebuild a solid wall

at this place.

• Every window needs a full column of solid walls on both its

left and its right in order not to affect the stability of the wall.

• Maximize the number of windows!



Renovate: Task statement

The problem is the following:

• You’re given a n ×m rectangle ”wall” made of zeroes and

ones as input.

• Your task is to renovate the wall.

• When there’s a one at some coordinate, the wall is in good

shape at this position, so you leave it as it is.

• When there’s a zero, this section of the wall is holey, and you

have two choices: turn it into a window, or rebuild a solid wall

at this place.

• Every window needs a full column of solid walls on both its

left and its right in order not to affect the stability of the wall.

• Maximize the number of windows!



Renovate: Sample case

1 1 0 1 0 0 1

1 1 0 1 0 0 1

0 1 0 0 0 0 1

1 1 1 1 1 0 1

1 1 1 1 1 0 1

This is our input.

Zeroes are broken

parts of the wall

and ones are solid

parts of the wall.



Renovate: Sample case

Let’s use images as

a clearer

representation of

this example.



Renovate: Sample case

For every hole, we

must decide if we

fill it with a wall or

with a window.



Renovate: Sample case

It is always possible

to have a complete

wall without any

windows. Of

course, this is very

rarely optimal.



Renovate: Sample case

Building windows in

every holey part of

the wall is not

always possible. For

example, the wall

here is not stable at

all.



Renovate: Sample case

You can’t have a

window in the

leftmost column,

because there’s no

wall on its left. But

removing it is still

not enough: the

wall is still unstable.



Renovate: Sample case

You always have to

build two full

columns around the

windows that you

build.



Renovate: Sample case

If you build a

window in a

column, it’s always

optimal to build all

possible windoww

in that column,

because you don’t

need to sacrifice

any further possible

windows in order to

build them.



Renovate: Sample case

This is not optimal:

6 windows.



Renovate: Sample case

This is not optimal:

6 windows.



Renovate: Sample case

This is optimal: 8

windows.



Renovate: Precomputation

The problem gets easier when we apply these observations before

starting to think about dynamic programming.

• We reduce the problem to a one-dimensional problem:

compute the number of possible windows in every column (we

always either build none or all of them).

• We set the number of possible windows in the leftmost and

rightmost columns to 0.

We start by computing an array w [m]. For every 0 ≤ i < m, let

w [i ] be the number of possible windows in the i-th column.



Renovate: Precomputation

The problem gets easier when we apply these observations before

starting to think about dynamic programming.

• We reduce the problem to a one-dimensional problem:

compute the number of possible windows in every column (we

always either build none or all of them).

• We set the number of possible windows in the leftmost and

rightmost columns to 0.

We start by computing an array w [m]. For every 0 ≤ i < m, let

w [i ] be the number of possible windows in the i-th column.



Renovate: Precomputation

The problem gets easier when we apply these observations before

starting to think about dynamic programming.

• We reduce the problem to a one-dimensional problem:

compute the number of possible windows in every column (we

always either build none or all of them).

• We set the number of possible windows in the leftmost and

rightmost columns to 0.

We start by computing an array w [m]. For every 0 ≤ i < m, let

w [i ] be the number of possible windows in the i-th column.



Renovate: Precomputation

The problem gets easier when we apply these observations before

starting to think about dynamic programming.

• We reduce the problem to a one-dimensional problem:

compute the number of possible windows in every column (we

always either build none or all of them).

• We set the number of possible windows in the leftmost and

rightmost columns to 0.

We start by computing an array w [m]. For every 0 ≤ i < m, let

w [i ] be the number of possible windows in the i-th column.



Renovate: Precomputation

int main(){

int n, m; // n = height, m = width

cin >> n >> m;

// w[i] = number of holes in the i-th column

vector<int> w(m, 0);

for(int i = 0; i < n; i++) {

for(int j = 0; j < m; j++) {

int c;

cin >> c;

w[j] += c == 0; // this section is holey

}

}

w[0] = 0; w[m-1] = 0; // no window on the edges

... // actual computation



Renovate: DP’s four steps

How do we modelize this problem using the four steps ?



Renovate: Subproblems

Our general subproblem will be

si , the maximal number of

windows using the first i + 1 columns for any 0 ≤ i < m.



Renovate: Subproblems

Our general subproblem will be si , the maximal number of

windows using the first i + 1 columns for any 0 ≤ i < m.



Renovate: General formula

When trying to compute si , the solution for i, we have two

possibilities:

1. We don’t build the windows in the i-th column.

2. We do build the windows in the i-th column. In that case, we

can’t have any windows in the (i − 1)-th column.



Renovate: General formula

When trying to compute si , the solution for i, we have two

possibilities:

1. We don’t build the windows in the i-th column.

2. We do build the windows in the i-th column. In that case, we

can’t have any windows in the (i − 1)-th column.



Renovate: General formula

When trying to compute si , the solution for i, we have two

possibilities:

1. We don’t build the windows in the i-th column.

2. We do build the windows in the i-th column. In that case, we

can’t have any windows in the (i − 1)-th column.



Renovate: General formula

How does this translate into a formula?

1. If we don’t build the windows in the i-th column, si =

si−1.

2. If we do build the windows in the i-th column, we can’t use

the (i − 1)-th column’s windows, but we can add the windows

from the i-th column. Thus, si =

si−2 + w [i ].

Since si should be optimal, we take the highest of these values.

si = max(si−1, si−2 + w [i ])



Renovate: General formula

How does this translate into a formula?

1. If we don’t build the windows in the i-th column, si =

si−1.

2. If we do build the windows in the i-th column, we can’t use

the (i − 1)-th column’s windows, but we can add the windows

from the i-th column. Thus, si =

si−2 + w [i ].

Since si should be optimal, we take the highest of these values.

si = max(si−1, si−2 + w [i ])



Renovate: General formula

How does this translate into a formula?

1. If we don’t build the windows in the i-th column, si =si−1.

2. If we do build the windows in the i-th column, we can’t use

the (i − 1)-th column’s windows, but we can add the windows

from the i-th column. Thus, si =

si−2 + w [i ].

Since si should be optimal, we take the highest of these values.

si = max(si−1, si−2 + w [i ])



Renovate: General formula

How does this translate into a formula?

1. If we don’t build the windows in the i-th column, si =si−1.

2. If we do build the windows in the i-th column, we can’t use

the (i − 1)-th column’s windows, but we can add the windows

from the i-th column. Thus, si =

si−2 + w [i ].

Since si should be optimal, we take the highest of these values.

si = max(si−1, si−2 + w [i ])



Renovate: General formula

How does this translate into a formula?

1. If we don’t build the windows in the i-th column, si =si−1.

2. If we do build the windows in the i-th column, we can’t use

the (i − 1)-th column’s windows, but we can add the windows

from the i-th column. Thus, si =si−2 + w [i ].

Since si should be optimal, we take the highest of these values.

si = max(si−1, si−2 + w [i ])



Renovate: General formula

How does this translate into a formula?

1. If we don’t build the windows in the i-th column, si =si−1.

2. If we do build the windows in the i-th column, we can’t use

the (i − 1)-th column’s windows, but we can add the windows

from the i-th column. Thus, si =si−2 + w [i ].

Since si should be optimal, we take the highest of these values.

si = max(si−1, si−2 + w [i ])



Renovate: General formula

How does this translate into a formula?

1. If we don’t build the windows in the i-th column, si =si−1.

2. If we do build the windows in the i-th column, we can’t use

the (i − 1)-th column’s windows, but we can add the windows

from the i-th column. Thus, si =si−2 + w [i ].

Since si should be optimal, we take the highest of these values.

si = max(si−1, si−2 + w [i ])



Renovate: Base case

We need two base cases, because our formula goes two steps back.

• s0 = w [0] = 0 (you can never build windows in the first

column).

• s1 = w [1] (since there are never any windows in the first

column, it is always optimal to build the second column’s

windows if you don’t take into account the next columns).



Renovate: Base case

We need two base cases, because our formula goes two steps back.

• s0 = w [0] = 0 (you can never build windows in the first

column).

• s1 = w [1] (since there are never any windows in the first

column, it is always optimal to build the second column’s

windows if you don’t take into account the next columns).



Renovate: Base case

We need two base cases, because our formula goes two steps back.

• s0 = w [0] = 0 (you can never build windows in the first

column).

• s1 = w [1] (since there are never any windows in the first

column, it is always optimal to build the second column’s

windows if you don’t take into account the next columns).



Renovate: Relevant subproblem

The relevant subproblem is the one including all columns, so the

subproblem we want to compute is s...



Renovate: Relevant subproblem

The relevant subproblem is the one including all columns, so the

subproblem we want to compute is sm−1.



Renovate: Relevant subproblem

The relevant subproblem is the one including all columns, so the

subproblem we want to compute is sm−1(= sm−2, if m > 1).



Renovate: Slow solution

Like for Fibonacci’s sequence, we could use this recurrence formula

and these base cases and get a slow, but correct, solution.

int s(int i, vector<int> &w) {

if(i < 2) return w[i]; // base cases

return max(s(i-1, w), s(i-2, w) + w[i]);

}



Renovate: Computation

We do not, however, want to compute subproblems twice. We just

compute them in the order in which they’re needed and store them.

The order in which they’re needed, like for Fibonacci’s sequence, is

pretty obvious. Every subproblem relies on earlier subproblems

only, so we solve them in increasing order.



Renovate: Computation

We do not, however, want to compute subproblems twice. We just

compute them in the order in which they’re needed and store them.

The order in which they’re needed, like for Fibonacci’s sequence, is

pretty obvious. Every subproblem relies on earlier subproblems

only, so we solve them in increasing order.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 Optimal number of windows for the first 1 column

1 0 Optimal number of windows for the first 2 columns

2 3 Optimal number of windows for the first 3 columns

3 1 Optimal number of windows for the first 4 columns

4 3 Optimal number of windows for the first 5 columns

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 w[0] (base case)

1 0 Optimal number of windows for the first 2 columns

2 3 Optimal number of windows for the first 3 columns

3 1 Optimal number of windows for the first 4 columns

4 3 Optimal number of windows for the first 5 columns

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 Optimal number of windows for the first 2 columns

2 3 Optimal number of windows for the first 3 columns

3 1 Optimal number of windows for the first 4 columns

4 3 Optimal number of windows for the first 5 columns

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 w[1] (base case)

2 3 Optimal number of windows for the first 3 columns

3 1 Optimal number of windows for the first 4 columns

4 3 Optimal number of windows for the first 5 columns

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 Optimal number of windows for the first 3 columns

3 1 Optimal number of windows for the first 4 columns

4 3 Optimal number of windows for the first 5 columns

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 max(v1, v0 + w [2])

3 1 Optimal number of windows for the first 4 columns

4 3 Optimal number of windows for the first 5 columns

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 3

3 1 Optimal number of windows for the first 4 columns

4 3 Optimal number of windows for the first 5 columns

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 3

3 1 max(v2, v1 + w [3])

4 3 Optimal number of windows for the first 5 columns

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 3

3 1 3

4 3 Optimal number of windows for the first 5 columns

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 3

3 1 3

4 3 max(v3, v2 + w [4])

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 3

3 1 3

4 3 6

5 5 Optimal number of windows for the first 6 columns

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 3

3 1 3

4 3 6

5 5 max(v4, v3 + w [4])

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 3

3 1 3

4 3 6

5 5 8

6 0 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 3

3 1 3

4 3 6

5 5 8

6 0 max(v5, v4 + w [4])

This is easy to turn into a for loop.



Renovate: Computation

Step by step: sample case

i w [i ] vi

0 0 0

1 0 0

2 3 3

3 1 3

4 3 6

5 5 8

6 0 8

This is easy to turn into a for loop.



Renovate: Computation

Computation, step by step

i vi

0 Optimal number of windows for the first 1 column

1 Optimal number of windows for the first 2 columns

2 Optimal number of windows for the first 3 columns

3 Optimal number of windows for the first 4 columns

4 Optimal number of windows for the first 5 columns

· · · · · ·
m-1 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Computation, step by step

i vi

0 w [0] (base case)

1 Optimal number of windows for the first 2 columns

2 Optimal number of windows for the first 3 columns

3 Optimal number of windows for the first 4 columns

4 Optimal number of windows for the first 5 columns

· · · · · ·
m-1 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Computation, step by step

i vi

0 w [0] (base case)

1 w [1] (base case)

2 Optimal number of windows for the first 3 columns

3 Optimal number of windows for the first 4 columns

4 Optimal number of windows for the first 5 columns

· · · · · ·
m-1 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Computation, step by step

i vi

0 w [0] (base case)

1 w [1] (base case)

2 max(v1, v0 + w [2])

3 Optimal number of windows for the first 4 columns

4 Optimal number of windows for the first 5 columns

· · · · · ·
m-1 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Computation, step by step

i vi

0 w [0] (base case)

1 w [1] (base case)

2 max(v1, v0 + w [2])

3 max(v2, v1 + w [3])

4 Optimal number of windows for the first 5 columns

· · · · · ·
m-1 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Computation, step by step

i vi

0 w [0] (base case)

1 w [1] (base case)

2 max(v1, v0 + w [2])

3 max(v2, v1 + w [3])

4 max(v3, v2 + w [4])

· · · · · ·
m-1 Optimal number of windows for all columns

This is easy to turn into a for loop.



Renovate: Computation

Computation, step by step

i vi

0 w [0] (base case)

1 w [1] (base case)

2 max(v1, v0 + w [2])

3 max(v2, v1 + w [3])

4 max(v3, v2 + w [4])

· · · · · ·
m-1 max(vm − 2, vm − 3 + w [m − 1]) (relevant subproblem)

This is easy to turn into a for loop.



Renovate: Implementation

... // precomputation

vector<int> s(m);

s[0] = 0; s[1] = w[1]; // base cases

for(int i = 2; i < m; i++)

s[i] = max(s[i-1], s[i-2] + w[i]);

cout << s[m-1] << '\n'; // relevant subproblem

}



Runtime analysis

How fast does this solution run?

O(nm) (because of the input;

after our precomputations, we solve the problem in O(m)).



Runtime analysis

How fast does this solution run? O(nm) (because of the input;

after our precomputations, we solve the problem in O(m)).



Conclusion

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 DP’s four steps

2.2 DP’s four steps and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Renovate

3. Conclusion



When is DP useful?

• When you can divide a problem into subproblems.

• When the subproblems overlap.

• For example, it enables you to compute some recursive

functions faster, for example Fibonacci’s sequence.

• A lot of optimization problems require a dynamic

programming solution.

• DP is often applied in problems with more than one

dimension. In that case, finding the order of computation may

be more difficult than usual.



When is DP useful?

• When you can divide a problem into subproblems.

• When the subproblems overlap.

• For example, it enables you to compute some recursive

functions faster, for example Fibonacci’s sequence.

• A lot of optimization problems require a dynamic

programming solution.

• DP is often applied in problems with more than one

dimension. In that case, finding the order of computation may

be more difficult than usual.



When is DP useful?

• When you can divide a problem into subproblems.

• When the subproblems overlap.

• For example, it enables you to compute some recursive

functions faster, for example Fibonacci’s sequence.

• A lot of optimization problems require a dynamic

programming solution.

• DP is often applied in problems with more than one

dimension. In that case, finding the order of computation may

be more difficult than usual.



When is DP useful?

• When you can divide a problem into subproblems.

• When the subproblems overlap.

• For example, it enables you to compute some recursive

functions faster, for example Fibonacci’s sequence.

• A lot of optimization problems require a dynamic

programming solution.

• DP is often applied in problems with more than one

dimension. In that case, finding the order of computation may

be more difficult than usual.



When is DP useful?

• When you can divide a problem into subproblems.

• When the subproblems overlap.

• For example, it enables you to compute some recursive

functions faster, for example Fibonacci’s sequence.

• A lot of optimization problems require a dynamic

programming solution.

• DP is often applied in problems with more than one

dimension. In that case, finding the order of computation may

be more difficult than usual.



Some remarks about recursion

It is also possible to keep the recursive function and store already

stored values, for example in a map.

vector<int> m(MAX_N);

int fib(int n) {

if(n<2) return n;

if(m[n]) return m[n];

return m[n] = fib(n-1) + fib(n-2);

}

Just like in the case of Fibonacci’s sequence and Renovate, it is

not, however, necessary to store all previous values. Recursion can

also cause further problems (stack limit exceeded). The approach

we used, building up the solutions in order, is called ”bottom-up”,

and it is good to get used to it.



Some remarks about recursion

It is also possible to keep the recursive function and store already

stored values, for example in a map.

vector<int> m(MAX_N);

int fib(int n) {

if(n<2) return n;

if(m[n]) return m[n];

return m[n] = fib(n-1) + fib(n-2);

}

Just like in the case of Fibonacci’s sequence and Renovate, it is

not, however, necessary to store all previous values. Recursion can

also cause further problems (stack limit exceeded). The approach

we used, building up the solutions in order, is called ”bottom-up”,

and it is good to get used to it.



How to be good at DP

• DP is hard

for most people.

• The concept is simple, but

applying it to a problem and

implementing the solution is difficult.

• Always think before you code!

• Most important of all: solve, solve, solve!



How to be good at DP

• DP is hard for most people.

• The concept is simple, but

applying it to a problem and

implementing the solution is difficult.

• Always think before you code!

• Most important of all: solve, solve, solve!



How to be good at DP

• DP is hard for most people.

• The concept is simple, but...

applying it to a problem and

implementing the solution is difficult.

• Always think before you code!

• Most important of all: solve, solve, solve!



How to be good at DP

• DP is hard for most people.

• The concept is simple, but applying it to a problem and

implementing the solution is difficult.

• Always think before you code!

• Most important of all: solve, solve, solve!



How to be good at DP

• DP is hard for most people.

• The concept is simple, but applying it to a problem and

implementing the solution is difficult.

• Always think before you code!

• Most important of all: solve, solve, solve!



How to be good at DP

• DP is hard for most people.

• The concept is simple, but applying it to a problem and

implementing the solution is difficult.

• Always think before you code!

• Most important of all: solve, solve, solve!



What’s next:

Solve DP tasks on the grader.

Next lecture: Subset Sum.


	Introduction
	What is dynamic programming?
	A simple example: Fibonacci's sequence

	The recipe for creating a good DP solution
	DP's four steps
	DP's four steps and Fibonacci's sequence
	How to implement a DP solution
	Another example: Renovate

	Conclusion

