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for solving problems (in particular optimization
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What is dynamic programming

DP is a technique that you may use when you can divide a problem
into subproblems and build the full solution using the partial
solutions (using recursion), but the subproblems overlap and you
end up solving the same subproblems over and over again.

A dynamic program avoids this problem by remembering what it
has already done and not computing it again.
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Fibonacci’s sequence

Fibonacci’s sequence can be defined as follows:
f0 = 0
f1 = 1
∀n ∈ N \ {0, 1}, fn = fn−1 + fn−2

Here are a few first values of the sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .
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Fibonacci’s sequence: Intuitive algorithm

An intuitive way of computing values of the sequence would be:

int fib(int n) {
if(n==0) return 0;
if(n==1) return 1;
return fib(n-1) + fib(n-2);

}



Fibonacci’s sequence: The problem

If you try to run this code to compute f100, you’d have to be very
patient to get an answer.

Why?
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Fibonacci’s sequence: The problem

This example shows us that the number of operations increases at
the same speed as the results (the number of times we compute
each value are all increasing values of Fibonacci’s sequence)!

The Fibonacci sequence grows exponentially, so we have an
exponential running time...
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Fibonacci’s sequence: The solution

We can do (much) better.

We don’t need to compute anything
twice.
We choose to trade memory usage for speed: store what we have
computed and check if we have already computed the answer for
each call.
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Fibonacci’s sequence: The solution

A simple modification of our intuitive algorithm suffices:

vector<int> v; // initialized with v.resize(n+1,-1)
int fib(int n) {

if(v[n]!=-1) return v[n];
if(n==0) return v[0] = 0;
if(n==1) return v[1] = 1;
return v[n]=fib(n-1)+fib(n-2);

}

Our running time is now down to
There’s a better solution in O(log(n)), but it is not in our scope
for today.
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The recipe for creating a good DP solution

This was a simple example, but the same schemata apply to much
more complicated problems. We shall now generalize what we’ve
learned from Fibonacci’s sequence and apply it to other problems.
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The four steps of DP

Here is a classic method of thinking about dynamic programming,
using four basic steps.

Think first, code second!

1. Define subproblems.
2. Find a general recurrence formula to solve a subproblem using

the solution to other subproblems.
3. Find the base case(s).
4. Which is the relevant subproblem?
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The four steps of DP and Fibonacci’s sequence

How does our solution for Fibonacci’s sequence match our four
steps?

1. Suproblems:

fi.

2. General formula:

fi = fi−1 + fi−2.

3. Base cases:

f0 = 0, f1 = 1.

4. Relevant suproblem:

fn.
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Implementation

— Okay, I’ve followed your four steps. How do I use this to code a
solution now?

• Call the function for the relevant subproblem.
• At the beginning of each call, check if you have already

computed the solution for this subproblem.
• Store and return the answer:

• If you’re at a base case, compute the solution for that one.
• Else, use a recursive call to compute the solution for this

subproblem according to the formula.



Implementation

Use a recursive function like you would in an intuitive solution.

• Call the function for the relevant subproblem.
• At the beginning of each call, check if you have already

computed the solution for this subproblem.
• Store and return the answer:

• If you’re at a base case, compute the solution for that one.
• Else, use a recursive call to compute the solution for this

subproblem according to the formula.



Implementation

Use a recursive function like you would in an intuitive solution.

• Call the function for the relevant subproblem.

• At the beginning of each call, check if you have already
computed the solution for this subproblem.

• Store and return the answer:

• If you’re at a base case, compute the solution for that one.
• Else, use a recursive call to compute the solution for this

subproblem according to the formula.



Implementation

Use a recursive function like you would in an intuitive solution.

• Call the function for the relevant subproblem.
• At the beginning of each call, check if you have already

computed the solution for this subproblem.

• Store and return the answer:

• If you’re at a base case, compute the solution for that one.
• Else, use a recursive call to compute the solution for this

subproblem according to the formula.



Implementation

Use a recursive function like you would in an intuitive solution.

• Call the function for the relevant subproblem.
• At the beginning of each call, check if you have already

computed the solution for this subproblem.
• Store and return the answer:

• If you’re at a base case, compute the solution for that one.
• Else, use a recursive call to compute the solution for this

subproblem according to the formula.



Implementation

Use a recursive function like you would in an intuitive solution.

• Call the function for the relevant subproblem.
• At the beginning of each call, check if you have already

computed the solution for this subproblem.
• Store and return the answer:

• If you’re at a base case, compute the solution for that one.
• Else, use a recursive call to compute the solution for this

subproblem according to the formula.



Implementation

Use a recursive function like you would in an intuitive solution.

• Call the function for the relevant subproblem.
• At the beginning of each call, check if you have already

computed the solution for this subproblem.
• Store and return the answer:

• If you’re at a base case, compute the solution for that one.

• Else, use a recursive call to compute the solution for this
subproblem according to the formula.



Implementation

Use a recursive function like you would in an intuitive solution.

• Call the function for the relevant subproblem.
• At the beginning of each call, check if you have already

computed the solution for this subproblem.
• Store and return the answer:

• If you’re at a base case, compute the solution for that one.
• Else, use a recursive call to compute the solution for this

subproblem according to the formula.



Another example: Bottles

1. Introduction

1.1 What is dynamic programming?

1.2 A simple example: Fibonacci’s sequence

2. The recipe for creating a good DP solution

2.1 The four steps of DP

2.2 The four steps of DP and Fibonacci’s sequence

2.3 How to implement a DP solution

2.4 Another example: Bottles

3. Conclusion



Bottles: Task statement

The problem is the following:

• On the second day of the SOI workshop, there are n bottles of
soda.

• Stofl wants to drink as much soda as possible.
• On the first day, he drank all of the soda and the other

participants did not get any.
• The leaders thus ruled that Stofl should be allowed to drink

only from non-adjacent bottles.
• Compute the maximum amount of soda that Stofl can drink,

given the volumes vi of all available bottles.
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Bottles: Sample case

33 2 4 66 1 2 44

Stofl can drink 13 units of soda at most!



Bottles: The four steps of DP

How do we model this problem using the four steps described
earlier?
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drinkable if the problem is restricted to the i + 1 first bottles, for
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How does this translate into a formula?

1. If we do not drink the i-th bottle, Stofl can drink

si−1.

2. If we do drink the i-th bottle, we can’t drink the (i − 1)-th
bottle, but we can add the i-th one. Thus, Stofl can drink

si−2 + vi.

si should be as large as possible, so we always take the max.

si = max(si−1, si−2 + vi)
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Bottles: Base case

We need two base cases, because our formula goes two steps back.

• s0 = v0 (if there is only one bottle, just drink it).
• s1 = max(v0, v1) (when there are two bottles, you can always

drink exactly one of those, so just pick the largest one).
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The relevant subproblem is the one including all bottles, so the
subproblem we want to compute is s....



Bottles: Relevant subproblem

The relevant subproblem is the one including all bottles, so the
subproblem we want to compute is sn−1.



Bottles: Slow solution

Applying this recusion intuitively gives this code:

vector<int> v ;
int dp(int i) {

if(i==0) return v[0];
if(i==1) return max(v[0],v[1]);
return max(dp(i-1),dp(i-2)+v[i]);

} int main() {
int n; cin >> n;
v.resize(n);

for(int i = 0; i < n; i++) cin >> v[i];
cout << dp(n-1) << endl;

}



Bottles: DP solution

Improving it with memoization is easy:

vector<int> v, m;
int dp(int i) {

if(m[i]!=-1) return m[i];
if(i==0) return m[0] = v[0];
if(i==1) return m[1] = max(v[0],v[1]);
return m[i] = max(dp(i-1),dp(i-2)+v[i]);

} int main() {
int n; cin >> n;
v.resize(n);
m.resize(n,-1);
for(int i = 0; i < n; i++) cin >> v[i];
cout << dp(n-1) << endl;

}



Bottles: Runtime analysis

This is just like with Fibonacci: we went from an exponential to a
linear runtime!
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When is DP useful?

• When you can divide a problem into subproblems.

• When the subproblems overlap.
• For example, it enables you to compute some recursive

functions faster, for example Fibonacci’s sequence.
• A lot of optimization problems require a dynamic

programming solution. A good way to recognize them is that
they are about making choices: choosing whether to build a
wall or a window, whether to pack an item in one’s bag, etc.
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How to be good at DP

• DP is hard

for most people.
• The concept is simple, but

applying it to a problem and
implementing the solution is difficult.

• Always think before you code!
• Most important of all: solve, solve, solve!
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• DP is hard for most people.
• The concept is simple, but applying it to a problem and

implementing the solution is difficult.
• Always think before you code!
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What’s next:
Solve DP tasks on the grader.

Next lecture: Subset Sum.
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