C++4 Loops and Vectors

Fabian Lyck
30 October 2021

Swiss Olympiad in Informatics



General Printing

Instead of:

int a = 5;

string b = "blub”

print(a, b);
prints "5 blub”

Use:

int a =25;

string b = "blub”

cout << a << " << b << "\n";

prints "5 blub”




Loops



Repeated Check

if checks a condition once:

int n = 20;
if (n%2=0) {
n=n/ 2;
¥
cout << n << "\n"; prints "10"
if (n%2=0) {
n=n/ 2;
}
cout << n << "\n"; prints "5"
if (n%2=0) {
n=n/ 2;
b
cout << n << "\n"; prints "5"




Repeated Check

while checks a condition until it fails:

int n = 20;

while (n % 2 = 0) {
n=n/ 2;

}

cout << n << "\n"; prints "5"




Repeated Check

What will this code print?

int n = 20;

while (n % 2 = 0) {
cout << n << "\n"; prints 77
n=n/ 2;

¥




Application: Repeating patterns

Repeat a piece of code multiple times:

cout << "The._dates_of_October_are:” << "\n";
cout << " October.” << 1 << "\n";
cout << " October.” << 2 << "\n";
cout << " October.” << 3 << "\n";

cout << " October.” << 29 << "\n";
cout << " October.” << 30 << "\n";
cout << " October.” << 31 << "\n";




Application: Repeating patterns

Repeat a piece of code multiple times:

cout << "The_dates_of_October_are:” << "\n";
int i =1;
while (i <= 31) {
cout << " October.” << i << "\n";
i=1i4+1;




Application: Repeating patterns

Countdown from 10:

cout << " Counting._down:” << "\n";
int x = 10;
while (x >= 0) {

cout << x << "\n";

X =x — 1;

What is the output?

What is the final value of x?



For Loops

for is a more compact way of counting:

cout << "The._dates_of_October_are:” << "\n";

int i = 1; 1. Initialization
while (i <= 31) { 2. Check
cout << " October.” << i << "\n";
=i+ 1; 3. Increment




For Loops

for is a more compact way of counting:

cout << "The._dates_of_October_are:” << "\n";

int i = 1; 1. Initialization
while (i <= 31) { 2. Check
cout << " October.” << i << "\n";
=i+ 1; 3. Increment

This does the same:

cout << "The_dates_of_October_are:"” << "\n";
1. 2 B]

for(int i = 1; i<=31; i =i+ 1) {
cout << " October”, i << "\n";

}




For Loops

Countdown from 10:

cout << " Counting_down:" << "\n";

int x = 10; 1 Initialization
while (x >= 0) { 2. Check
cout << x << "\n";
X =x— 1; 3. Increment




For Loops

Countdown from 10:

cout << " Counting_down:" << "\n";
int x = 10; 1 Initialization
while (x >= 0) { 2. Check
cout << x << "\n";
X =x— 1; 3. Increment
¥

Using for loop:

cout << " Counting._down:" << "\n";
1. 2 B]

for(int x = 10; x >= 0; x = x — 1) {
cout << x << "\n";

}




Two dimensional loops

Let's say we want to print multiples of each number, e.g.:

B
1

coo
w N =
AN
o o W
(SIS

10



Two dimensional loops

Let's say we want to print multiples of each number, e.g.:

We can do this using for loops:

for(int i =0; i<=5; i =1i+1) {
cout << i << "L

}

cout << "\n";

for(int i = 0; i<=5; i =1i+1){
cout << 2 * i << "

b

cout << "\n";

for(int i =0; i <=5; i =i+ 1) {
cout << 3 x i << "L

}

cout << "\n";

10



Two dimensional loops

Can we write this more compact using a loop?

for(int i = 0; i<=5; i =i+ 1) {
cout << i << "L

}

cout << "\n";

for(int i = 0; i<=5; i =i+ 1) {
cout << 2 *x i << "L

}

cout << "\n";

for(int i = 0; i <=5; i =i+ 1) {
cout << 3 *x i << "

}

cout << "\n";

11



Two dimensional loops

Can we write this more compact using a loop?

for(int i = 0; i<=5; i =i+ 1) {
cout << i << "L

}

cout << "\n";

for(int i = 0; i<=5; i =i+ 1) {
cout << 2 *x i << "L

}

cout << "\n";

for(int i = 0; i <=5; i =i+ 1) {
cout << 3 *x i << "

}

cout << "\n";

Yes! Use a second loop:

for(int line = 0; line <= 2; line = line + 1) {
for(int i = 0; i <= 5; =i+ 1) {
cout << line * i << "_.";

}

cout << "\n";

11



Containers




Define a vector to hold multiple values:

vector<int> fibonacci;

12



Vector

Define a vector to hold multiple values:

vector<int> fibonacci;

o]

fibonacci.push_back(0);

12



Vector

Define a vector to hold multiple values:

vector<int> fibonacci;

o] [1]

fibonacci.push_back(0);
fibonacci.push_back(1);

13



Vector

Define a vector to hold multiple values:

vector<int> fibonacci;

o] [1] [1]

fibonacci.push_back(0);
fibonacci.push_back(1);
fibonacci.push_back(1);

14



Vector

Define a vector to hold multiple values:

vector<int> fibonacci;

o] [1] [1] [2]

fibonacci.push_back(0);
fibonacci.push_back(1);
fibonacci.push_back(1);
fibonacci.push_back(2);

ii5)



Vector

Define a vector to hold multiple values:

vector<int> fibonacci;

o] [2] [a] [2] [5]

fibonacci.push_back(0);
fibonacci.push_back(1);
fibonacci.push_back(1)

fibonacci.push_back(2);
fibonacci.push_back(3);

16



Vector

Define a vector to hold multiple values:

vector<int> fibonacci;

o] [1] [a] [2] [3] [s]

fibonacci.push_back(0);
fibonacci.push_back(1);
fibonacci.push_back(1);
fibonacci.push_back(2);
fibonacci.push_back(3);
fibonacci.push_back(5);

17



Vector

Define a vector to hold multiple values:

vector<int> fibonacci;

o] [1]

fibonacci
fibonacci

fibonacci.

fibonacci.
fibonacci.
fibonacci.
fibonacci.

push_back (0);

.push_back(1);
.push_back(1);

push_back(2);
push_back(3);
push_back(5);
push_back(8);

18



Vector

Define a vector to hold multiple values:

vector<int> fibonacci;

o] [1] [1] [2]

fibonacci.push_back(0);
fibonacci.push_back(1);
fibonacci.push_back(1);
fibonacci.push_back(2);
fibonacci.push_back(3);
fibonacci.push_back(5);
fibonacci.push_back(8);
fibonacci.pop_back();

19



Vector - Overview

A vector is defined using its type and optionally size:

vector<int> fibonacci; An empty vector of integer numbers
vector<string> food(3); A vector of size 3 that stores strings

20



Vector - Overview

A vector is defined using its type and optionally size:

vector<int> fibonacci; An empty vector of integer numbers
vector<string> food(3); A vector of size 3 that stores strings

Elements can be accessed at any position:

food [0] = " Pancakes”; 0 indicates the first element

food [1] = " Muffins";

food [2] = " Cookies”;

cout << food.size () << "\n"; Prints "3", the size of food

20



Vector - Overview

A vector is defined using its type and optionally size:

vector<int> fibonacci; An empty vector of integer numbers
vector<string> food(3); A vector of size 3 that stores strings

Elements can be accessed at any position:

food [0] = " Pancakes”; 0 indicates the first element

food [1] = " Muffins";

food [2] = " Cookies”;

cout << food.size () << "\n"; Prints "3", the size of food

They can be added or removed at the end:

food . push_back(” Ruebli”); Add " Ruebli” to the end of the food vector
cout << food [3] << "\n"; Prints " Ruebli”, the fourth element of food
cout << food[food.size () — 1] << "\n";

Prints " Ruebli”, the last element of food
food . pop_back(); Remove " Ruebli”

20



Vector - Input/Output

Read N numbers:

int N= read_int();

vector<int> numbers;

for (int i =0; i <N; i =1i+1) {
int new_number = read_int();
numbers. push_back (new_number);

21



Vector - Input/Output

Read N numbers:

int N= read_int();

vector<int> numbers;

for (int i =0; i <N; i =1i+1) {
int new_number = read_int();
numbers. push_back (new_number);

Print a vector of numbers:

for (int i = 0; i < numbers.size();
cout << numbers[i] << ".";

}

cout << "\n";

i+ 1) {

21



Vector - Fibonacci

Calculate the first N Fibonacci numbers:

int N= read_int();
vector<int> fibonacci;
fibonacci.push_back(0);
fibonacci.push_back(1);
for (int i =2; i <N; i =1i+1) {
numbers. push_back (numbers[i — 2] + numbers[i — 1]);

}

22



Vector - Two Dimensions

Let’s store the multiples of every number in a vector

We can do this using two dimensional vectors:

vector<vector<int>> table (3, vector<int >(6));
for(int line = 0; line < table.size(); line = line + 1) {
for(int i = 0; i < table[line].size(); i =i + 1) {
table[line][i] = line * i;
b
}

23



	Loops
	Containers

