
Qualification Round SOI 2024/2025

Solution Booklet

Swiss Olympiad in Informatics

15 September – 30 November 2024

Qualification Round, 2024/2025
Task cheesemachine

Cheese Machine
Task Idea Johannes Kapfhammer, Charlotte Knierim
Task Preparation Théo von Düring
Description English Théo von Düring
Description German Benjamin Schmid
Description French Théo von Düring
Solution Théo von Düring

In this task we are given 𝑁 integers and we want to know if the 𝑁 integers form an arithmetic
progression, and if they do, what would the next number in the sequence be.

An arithmetic progression is defined as a sequence of integers for which the difference between
any integer and its preceding integer is always the same.
Formally if the sequence is 𝑎0 , 𝑎1 , . . . , 𝑎𝑁−1, then 𝑎𝑘 = 𝑎0 + 𝑘 · 𝑑 where 𝑑 = 𝑎𝑖+1 − 𝑎𝑖 for any
𝑘 = 0, . . . , 𝑁 − 1 and 𝑖 = 0, . . . , 𝑁 − 2.

Subtask 1: A small test (10 points)
In this first subtask, the sequence consists of only 2 integers. Therefore, we don’t need to verify if
the difference 𝑑 is the same for all pairs of consecutive integers, since there are only 2 elements
and 1 difference. Thus, 𝑑 is the difference between the first and second integers and when
applying our formula we obtain the third element.
1 def get_input():
2 input()
3 return map(int, input().split())
4

5 def solve():
6 a,b = get_input()
7 d = b-a
8 return a + 2*d
9

10 t = int(input())
11 for i in range(t):
12 print(f"Case #{i}: {solve()}")

The time and space complexity of this algorithm is 𝒪(1) since we execute a constant amount of
operations for all inputs and store a constant amount of numbers.

Subtask 2: Small test, no problems (13 points)
In this subtask, we have 3 numbers and have the guarantee that the sequence is an arithmetic
progression. We only now need to compute the fourth element of the sequence. By applying our
formula with 𝑑 being the difference between the first two integers, we can solve the problem in a
similar way as before.
1 def solve():
2 a,b,c = get_input()
3 d = b-a
4 return a + 3*d

The time and space complexity are again 𝒪(1) for the same reasons.

2/43

Qualification Round, 2024/2025
Task cheesemachine

Subtask 3: Imprecise machine (17 points)
The third subtask is identical to the second one, but unlike the last subtask, we need to check if
the sequence is an arithmetic progression before predicting the next element. We thus only need
to add a condition checking if the differences between the first and second number is the same as
the one between the second and third.
1 def solve():
2 a,b,c = get_input()
3 d1 = b-a
4 d2 = c-b
5 if (d1 != d2):
6 return "NO"
7 return a + 3*d1

The time and space complexity are again 𝒪(1) for the same reasons.

Subtask 4: Finally a perfect machine (26 points)
This subtask is identical to the second one, we are guaranteed that the sequence forms an
arithmetic progression, however, now the sequence can be much longer. Since we know it’s
an arithmetic progression we can apply our formula using the difference between the first and
second number.
1 def solve():
2 l = list(get_input())
3 d = l[1]-l[0]
4 N = len(l)
5 return l[0] + N*d

The time and space complexity are 𝒪(𝑁) since we need to read the 𝑁 numbers and store them in
a list.

Subtask 5: The machine needs fixing (34 points)
Compared to the fourth subtask, in the fifth subtask we need to check that the sequence is an
arithmetic progression before outputing the next element of the sequence. We just iterate through
all consecutive 2 elements and compare their difference to the difference between the first 2
elements. If at some point the differences don’t match, then we should output "NO", otherwise
we use the same formula as before to calculate the next element.

1 def solve():
2 l = list(get_input())
3 d = l[1]-l[0]
4 N = len(l)
5 for i in range(1,N):
6 if l[i]-l[i-1] != d:
7 return "NO"
8 return l[0] + N*d

The time and space complexity are 𝒪(𝑁) since we need to read the 𝑁 numbers, compare the
differences of 𝑁 − 1 pairs of integers and store these elements in a list.

3/43

Qualification Round, 2024/2025
Task rotation

Rotation
Task Idea Charlotte Knierem
Task Preparation Elias Bauer
Description English Elias Bauer
Description German Benjamin Schmid
Description French Théo von Düring
Solution Elias Bauer

In this task one was given a string 𝑆 of lowercase letters of size 1 ≤ 𝑁 ≤ 107 as well as 1 ≤ 𝑄 ≤ 106

queries. The queries were one of the following:

• Output the character at index 𝑖.

• Swap the characters at indices 𝑖 and 𝑗.

• Repeat the following 𝐾 times: Remove the last character of the array and insert it at the
front. (Rotate the string 𝐾 characters to the right)

Subtask 1: No modifications (10 Points)
In this subtask, there were only queries of type 1. This means that we only needed to output the
character at a given index of the given string.
1 void solve(int t) {
2 int N, Q;
3 cin >> N >> Q;
4

5 vector<char> s(N);
6 for (auto& x : s)
7 cin >> x;
8

9 cout << "Case #" << t << ": ";
10

11 while (Q--) {
12 int type;
13 cin >> type;
14

15 int i;
16 cin >> i;
17 cout << s[i];
18 }
19

20 cout << "\n";
21 }

Subtask 2: Small Wheel (16 Points)
In this subtask, the limits on 𝑁 and 𝑄 were very small (1 ≤ 𝑁 ≤ 100 and 1 ≤ 𝑄 ≤ 100), so we can
just simulate the queries one by one.
1 void solve(int t) {
2 int N, Q;
3 cin >> N >> Q;
4

5 vector<char> s(N);
6 for (auto& x : s)
7 cin >> x;
8

9 cout << "Case #" << t << ": ";

4/43

Qualification Round, 2024/2025
Task rotation

10

11 while (Q--) {
12 int type;
13 cin >> type;
14

15 if (type == 1) {
16 int i;
17 cin >> i;
18 cout << s[i];
19 }
20 else if (type == 2) {
21 int i, j;
22 cin >> i >> j;
23 swap(s[i], s[j]);
24 }
25 else if (type == 3) {
26 int x;
27 cin >> x;
28

29 for (int i = 0; i < x; i++) {
30 char last = s.back();
31 s.pop_back();
32 s.insert(s.begin(), last);
33 }
34 }
35 }
36

37 cout << "\n";
38 }

Subtask 3: No rotations (11 Points)
In this subtask, there were no queries of type 3, so we only needed to swap two elements of the
array and output the 𝑖-th element. Therefore, even though the limits were large again, it was still
possible to simulate the queries one by one.

1 void solve(int t) {
2 int N, Q;
3 cin >> N >> Q;
4

5 vector<char> s(N);
6 for (auto& x : s)
7 cin >> x;
8

9 cout << "Case #" << t << ": ";
10

11 while (Q--) {
12 int type;
13 cin >> type;
14

15 if (type == 1) {
16 int i;
17 cin >> i;
18 cout << s[i];
19 }
20 else if (type == 2) {
21 int i, j;
22 cin >> i >> j;
23 swap(s[i], s[j]);
24 }
25 }
26

27 cout << "\n";
28 }

5/43

Qualification Round, 2024/2025
Task rotation

Subtask 4: No swaps (27 Points)
The solution to this subtask is the same as subtask 5, just without the swap operations, therefore
it is omitted.

Subtask 5: Escape (36 Points)
The main observation required to fully solve this task is the fact that the indices can be shifted
when performing operations of types 1 and 2 instead of shifting the entire array for each query of
type 3.

Let’s call the total number of shift operations performed so far 𝑥.

When performing operations 1 and 2, indices are transformed as following: 𝑖 → (𝑖 − 𝑥) % 𝑁 ,
where % is the modulo operator.

(Implementation detail: Due to the fact that the % operator in C++ is actually the remainder
operator and does not produce the desired results for negative numbers, we need to first add 𝑁
to make sure the sum of which the remainder is taken is always positive.)
1 void solve(int t) {
2 int N, Q;
3 cin >> N >> Q;
4

5 vector<char> s(N);
6 for (auto& x : s)
7 cin >> x;
8

9 cout << "Case #" << t << ": ";
10

11 int total_shifts = 0;
12

13 while (Q--) {
14 int type;
15 cin >> type;
16

17 if (type == 1) {
18 int i;
19 cin >> i;
20 i = (i - total_shifts + N) % N;
21 cout << s[i];
22 }
23 else if (type == 2) {
24 int i, j;
25 cin >> i >> j;
26 i = (i - total_shifts + N) % N;
27 j = (j - total_shifts + N) % N;
28

29 swap(s[i], s[j]);
30 }
31 else if (type == 3) {
32 int x;
33 cin >> x;
34 total_shifts += x;
35 total_shifts %= N;
36 }
37 }
38

39 cout << "\n";
40 }

6/43

Qualification Round, 2024/2025
Task landscaping

Landscaping
Task Idea Johannes Kapfhammer
Task Preparation Ferdinand Ornskov
Description English Ferdinand Ornskov
Description German Ferdinand Ornskov
Description French Théo von Düring
Solution Ferdinand Ornskov

Subtask 1: Finding pyramids (13 points)
In this subtask, you are only suppossed to check whether the given array already forms a valid
pyramid sequence. Here, one can first realize that a pyramid sequence is only possible if the
length of the array is odd, as there can only be one peak. Therefore, we can immediately exclude
this case. Next, we can split the pyramid sequence into two parts, an increasing and a decreasing
part. In the increasing case, we can realize that the height of the pyramid at position 𝑖 is given
by the formula ℎ[𝑖] = 𝑖 + 1. Similarly, the height for the decreasing part can be computed by
the formula ℎ[𝑖] = 𝑁 − 𝑖. Putting it all together, we get that height at position 𝑖 should be
ℎ[𝑖] = min(𝑖 + 1, 𝑁 − 𝑖). This condition can now be checked with the help of a for-loop.
1 def solve(N, h):
2 if N%2 == 0:
3 return "NO"
4 for i in range(N):
5 if h[i] != min(i+1, N-i):
6 return "NO"
7 return "YES"

Subtask 2: Explosive operations (19 points)
In this subtask, you don’t only need to check whether a given array already forms a valid pyramid
sequence but also try to use operations of type 1 to remove some numbers at the start (i.e. a
prefix) and some numbers at the end (i.e. a suffix) of the array. However, since we are not
allowed to modify any values in the array, any valid pyramid sequence must already exist as a
subsequence of the array. Therefore, it only remains to check every possible subsequence to see if
it forms a pyramid sequence. One initial idea to solve this problem might be to iterate over all
possible start- and endpoints and then use the same code from subtask 1 to check if the subarray
forms a pyramid sequence. Unfortunately, however, this takes up to 𝒪(𝑁3) operations which is
too slow. One way to circumvent this would be to start from the peak, then go left and right to
check whether we get a valid pyramid sequence. This can be done quite easily as we know the
height of the terrain 𝑗 positions away from the peak (at position 𝑖). Namely, the height is given by
ℎ[𝑖 − 𝑗] = ℎ[𝑖 + 𝑗] = ℎ[𝑖] − 𝑗. Again, this condition can be checked by a for-loop starting from
every possible peak position 𝑖.
1 def solve(N, h):
2 max_length = 0
3 for i in range(N):
4 found_pyramid_sequence = False
5 for j in range(h[i]):
6 if i-j < 0 or i+j >= N:
7 break
8 if h[i-j] != h[i]-j or h[i+j] != h[i]-j:
9 break

10 if h[i-j] == 1:
11 found_pyramid_sequence = True
12

7/43

Qualification Round, 2024/2025
Task landscaping

13 if found_pyramid_sequence:
14 max_length = max(max_length, 2*h[i]-1)
15

16 return max_length

Some things to watch out for when implementing this idea are, first of all, that you don’t get
any out-of-bounds errors when checking for a pyramid sequence that isn’t fully contained in the
array. Furthermore, a pyramid sequence is also only valid if it actually reaches 1 at both ends, so
an extra condition checking for that is also necessary.

Subtask 3: Only chiseling (17 points)
In this subtask, you are now only allowed to perform operations of type 2 to landscape the terrain
(i.e. decrease some values in the array) in order to form a new pyramid sequence. Here, one can
first observe that the length of the array never changes. Hence, the only valid non-zero pyramid
sequence has length 𝑁 . This means that we already know what the array should look like in the
end. And since the only operation we can do is to decrease elements in the array, we just need to
check whether the terrain at each index is at least as high as the required pyramid sequence. We
can implement this by slightly modifying the code from subtask 1.
1 def solve(N, h):
2 if N%2 == 0:
3 return 0
4 for i in range(N):
5 if h[i] < min(i+1, N-i):
6 return 0
7 return N

Subtask 4: Both operations (22 points)
For this subtask, we are now allowed to make use of both operations. From this, one might get
the idea that we somehow have to combine the ideas from the previous two subtasks. And in fact,
there is a way to do exactly this. When looking back at the changes we had to make from subtask
1 to subtask 3, we see that instead of checking for equality we only had to check if the terrain was
higher than some certain desired height, as we could always chisel it down with operation 2. So,
in some sense, we were only limited by the lowest points (relative to the desired height) of our
terrain. This might lead us to now try a similar adaptation of our code for subtask 2. Again, we
will try starting from every possible peak position and then going outwards from there, but now,
instead of checking if all terrain heights match some desired height, we will check for the part
of the terrain with the lowest relative height (i.e. the most restrictive point), as this, in the end,
is what limits our sequence length. More formally, we know that if the height of the terrain at
some position 𝑖 is ℎ[𝑖], then a peak a distance 𝑗 away can have a height at most ℎ[𝑖] + 𝑗 and all the
terrain height larger than that have to be chiseled down. So now, with these new insights, we can
modify our code from subtask 2. But now, instead of keeping track of whether we found a valid
pyramid sequence, we keep track of the maximum possible peak height if the peak would be
located at position 𝑖. This height is given by taking the minimum over all maximum possible
heights of the surrounding terrain. Such a maximum possible height from the terrain 𝑗 positions
away from the peak is given by max_possible_height = min(ℎ[𝑖 − 𝑗], ℎ[𝑖 + 𝑗]) + 𝑗. And then we
have to take the minimum over all distances 𝑗.
1 def solve(N, h):
2 max_length = 0
3 for i in range(N):
4 max_peak_height = h[i]
5 for j in range(h[i]):
6 if i-j < 0 or i+j >= N:
7 break
8 max_peak_height = min(max_peak_height, h[i-j]+j, h[i+j]+j)
9

8/43

Qualification Round, 2024/2025
Task landscaping

10 max_length = max(max_length, max_peak_height)
11

12 return max_length

Similar to subtask 2, we have to watch out for possible out-of-bounds errors here as well.

Subtask 5: Larger terrain (29 points)
Compared to the previous subtask, we are now only allowed to make up to 𝒪(𝑁) operations.
Therefore, we might try to find some optimization which allows us to get rid of one of the
for-loops in the subtask 4 code. As an initial step, we could try and have another look at our
computation of max_possible_height. First, we can see that the computation can be split up into
two parts: the computation of the longest increasing part and one for the longest decreasing
part, and then taking the minimum of the two in the end. For this, we define two new variables
max_height_increasing and max_height_decreasing. Since both of these cases can be treated
analogously, we will only discuss the increasing case from here on out. When looking at a certain
index 𝑗, we can see that our previous solution iterates over it potentially many times for each
peak to the right of it, seemingly performing very similar calculations every time. After all, the
maximum height of all the terrain to the left remains the same, regardless of what happens on the
right. With this insight in hand, one might try to find a way to pass the calculations for one peak 𝑖
onto the next peak 𝑖 + 1 on the right. Now, let’s say we’ve found the maximum possible height for
the increasing part at position 𝑖. Since the sequence has to be a staircase, we know the maximum
possible height for the increasing part at position 𝑖+1 can be at most larger by one. It can, however,
be lower if the terrain at index 𝑖+1 is lower than that. Furthermore, we can also decrease the other
terrain to the left appropriately using operations of type 2. Therefore, the maximum height can be
computed as follows: max_height_increasing[𝑖+1] = min(ℎ[𝑖+1],max_height_increasing[𝑖]+1).
Similarly, the values of max_height_decreasing[𝑖] can be calculated as well, but now going in
reverse order instead. Taking the minimum of these two values then gives us the answer at each
position 𝑖. Finally, taking the maximum over all these values gives us the desired result.

1 def solve(N, h):
2 max_height_increasing = [1]*N
3 max_height_decreasing = [1]*N
4

5 for i in range(0, N-1):
6 max_height_increasing[i+1] = min(h[i+1], max_height_increasing[i]+1)
7

8 for i in range(N-1, 1, -1):
9 max_height_decreasing[i-1] = min(h[i-1], max_height_decreasing[i]+1)

10

11 max_length = 0
12 for i in range(N):
13 max_length = max(max_length, min(max_height_increasing[i], max_height_decreasing[i])*2-1)
14

15 return max_length

9/43

Qualification Round, 2024/2025
Task trampoline

Trampoline
Task Idea Charlotte Knierim, Johannes Kapfhammer
Task Preparation Anna Khanova
Description English Anna Khanova
Description German Benjamin Schmid
Description French Cheng Zhong
Solution Anna Khanova, Karolina Alexiou, Leo Chen

Observation 1. The problem describes a directed acyclic graph (DAG) structure: each trampoline 𝑖 (for
0 ≤ 𝑖 < 𝑛 − 1) has exactly one outgoing edge to 𝑖 + 𝑗𝑖 . The last trampoline (𝑛 − 1) has no outgoing edges.
Every edge goes from a trampoline with a lower index to a trampoline with a higher index which ensures
that there are no cycles. We want to maximize the length of a path in this DAG, with variants allowing
changes in starting points or even modifying one trampoline’s jumpiness.

Subtask 1: From the beginning (8 points)
If we must start from the first trampoline (index 0), we follow the unique path determined by 𝑗𝑖
until we reach the last trampoline. The number of visited trampolines is simply the length of that
path. Since there is no choice involved, the solution is straightforward:

• Start at 0, count trampolines along the path defined by 𝑖 → 𝑖 + 𝑗𝑖 until reaching 𝑛 − 1.

Running time 𝒪(𝑛) is sufficient, as you just simulate the jumps until reaching the end.

Solution for Subtask 1:
1 #include <bits/stdc++.h>
2 using namespace std;
3 #define int int64_t
4

5 int solve() {
6 int n; cin >> n;
7 vector<int> j(n);
8 for (int i = 0; i < n; i++) cin >> j[i];
9

10 int res = 1;
11 int i = 0;
12 while (i != n-1) {
13 i = i + j[i];
14 res++;
15 }
16

17 return res;
18 }
19

20 signed main()
21 {
22 ios_base::sync_with_stdio(false);
23 cin.tie(0);
24

25 int T; cin >> T;
26 for (int t = 0; t < T; t++) {
27 cout << "Case #" << t << ": " << solve() << "\n";
28 }
29 }

10/43

Qualification Round, 2024/2025
Task trampoline

Subtask 2: From the optimal trampoline (14 points)
Now we can start from any trampoline. We want to find the longest path in the DAG. Since
each node has exactly one outgoing edge (except the last node), each trampoline defines a chain
leading to the end. To find the longest path:

• Consider that for each node 𝑖, the path length to the end is 1 + length(node 𝑖 + 𝑗𝑖).
• Compute these lengths. The maximum length over all nodes is the answer.

Running time The number of trampolines is small (𝑛 ≤ 100), a simpler solution (𝒪(𝑛2)) checking
every start is feasible.

Subtask 3: More trampolines (29 points)
The logic from subtask 2 scales up to 𝑛 ≤ 200 000. We must ensure an 𝒪(𝑛) solution. By storing
𝐷𝑃[𝑖] = length of path starting at 𝑖, we have:

𝐷𝑃[𝑛 − 1] = 1
𝐷𝑃[𝑖] = 1 + 𝐷𝑃[𝑖 + 𝑗𝑖]

Compute these in reverse order (from right to left). After computing all DP[𝑖], the answer is
max𝑖 DP[𝑖].

Running time This approach is 𝒪(𝑛): each trampoline is processed once.

Solution for Subtasks 2&3:
1 #include <bits/stdc++.h>
2 using namespace std;
3 #define int int64_t
4

5 int solve() {
6 int n; cin >> n;
7 vector<int> j(n);
8 for (int i = 0; i < n; i++) cin >> j[i];
9

10 vector<int> dp(n, 0);
11 dp[n-1] = 1;
12

13 for (int i = n-2; i >= 0; i--) {
14 dp[i] = dp[i + j[i]] + 1;
15 }
16

17 return *max_element(dp.begin(), dp.end());
18 }
19

20 signed main()
21 {
22 ios_base::sync_with_stdio(false);
23 cin.tie(0);
24

25 int T; cin >> T;
26 for (int t = 0; t < T; t++) {
27 cout << "Case #" << t << ": " << solve() << "\n";
28 }
29 }

Subtask 4: Adjusting one trampoline (14 points)
We now have the option to change the jumpiness of exactly one trampoline to any value we want
(while still respecting 𝑖 + 𝑗𝑖 < 𝑛). We also choose the starting trampoline optimally.

11/43

Qualification Round, 2024/2025
Task trampoline

One approach is to try all trampolines to adjust, and for each possible adjustment, compute the
longest path again. Since 𝑛 is small, this brute-force approach is feasible.

Running time 𝒪(𝑛3): 𝑛 trampolines, 𝑛 possible jumpiness values, 𝒪(𝑛) to compute the longest
path.

However, the following considerations can improve the complexity (and be useful for the next
subtask).

When we introduce the possibility of changing the jumpiness of one trampoline, we have three
cases when considering a starting trampoline 𝑖:

• We do not use any modification along the path starting at 𝑖. In this case, the result is simply
DP[𝑖].

• We modify a trampoline that we land on during the sequence (not the last one) to potentially
reach a more advantageous path, thus extending the total count of visited trampolines.
If we choose to use the modification at some trampoline, we can imagine that from this
point onwards, the best we can do is take the best sequence achievable if we were able to
choose any next step. This leads to a recurrence similar to the one described above, but
now allowing a one-time “jump” improvement.

• We may also consider modifying the starting trampoline itself before making the first jump.

We don’t need to consider all possible adjustments, but only the one which leads us to the best
trampoline. By going from right to left we can maintain the value of the best trampoline (if there
are many best, we can choose any).

Running time 𝒪(𝑛2): 𝑛 trampolines, 𝒪(𝑛) to compute the longest path, only one possible
adjustment to consider.

Subtask 5: No limits (35 points)
For large 𝑛 (𝑛 ≤ 200 000), we need an 𝒪(𝑛) approach. The key idea from subtask 4 still holds, but
must be implemented efficiently:

By carefully combining three scenarios described above, we compute a second DP array, let’s
call it better, which considers at each trampoline the best possible outcome if we may adjust this
trampoline or one of the next trampolines. To recompute this array we move from right to left
and choose the maximum of:

• Using no adjustment at all (simply DP[𝑖]),
• Using an adjustment at a future trampoline after this jump better[𝑖 + 𝑗𝑖] + 1,

• Using an adjustment on this trampoline to achieve a better jump (maximum over DP[𝑘],
where 𝑖 < 𝑘, can be maintained in an extra variable through the iterations).

This DP allows us to find, for every starting position, the maximum achievable chain length when
one trampoline can be adjusted. We then take the global maximum over all potential starting
positions.

Running time 𝒪(𝑛) can be achieved by the careful implementation.

Solution for Subtasks 4&5:
1 #include <bits/stdc++.h>
2 using namespace std;
3 #define int int64_t
4

5 int solve() {

12/43

Qualification Round, 2024/2025
Task trampoline

6 int n; cin >> n;
7 vector<int> j(n);
8 for (int i = 0; i < n; i++) cin >> j[i];
9

10 // dp as in subtask 3
11 vector<int> dp(n, 0);
12 dp[n-1] = 1;
13

14 for (int i = n-2; i >= 0; i--) {
15 dp[i] = dp[i + j[i]] + 1;
16 }
17

18 // new dp with one improvement
19 vector<int> better(n, 0);
20 int best = 1;
21 for (int i = n-2; i >= 0; i--) {
22 // dp[i]: none | better[i + j[i]] + 1: use improved field | best + 1: improve this field
23 better[i] = max({dp[i], better[i + j[i]] + 1, best + 1});
24 best = max(best, dp[i]);
25 }
26

27 return *max_element(better.begin(), better.end());
28 }
29

30 signed main()
31 {
32 ios_base::sync_with_stdio(false);
33 cin.tie(0);
34

35 int T; cin >> T;
36 for (int t = 0; t < T; t++) {
37 cout << "Case #" << t << ": " << solve() << "\n";
38 }
39 }

13/43

Qualification Round, 2024/2025
Task train

Train
Task Idea Cheng Zhong
Task Preparation Cheng Zhong
Description English Cheng Zhong
Description German Benjamin Schmid
Description French Cheng Zhong
Solution Cheng Zhong, Johannes Kapfhammer, Yaël Arn

In this task, you’re given 𝑀 trains with their stop stations in range 0, 1, 2, ..., 𝑁 − 1. There’s a rule
that says, if a train stops at one station, it’ll also stop at all stations whose level is no less than it.
You’re asked to find the largest 𝐾, so that all the first K trains comply with the rule.

Subtask 1: Mini Railway Line (23 points)
We can work on the relationship of the stations: regard each station as a vertex and construct a
graph; then check whether the graph complies with the rule. We use binary search to find 𝐾. For
a given 𝐾, for each train, we can use 𝒪(𝑁2) time to construct directed edges (low level station
-> high level station). For all 𝐾 trains, we need 𝒪(𝑁2 · 𝐾) ≤ 𝑂(𝑁2 · 𝑀) time. With a directed
graph, we use 𝒪(𝑁2) time to see if there’s a circle (contradiction). Therefore, in total the time is
𝒪(max(𝑁2 ·𝑀, 𝑁2) · log(𝑀)) = 𝑂(𝑁2 ·𝑀 · log(𝑀)).
1 #include "bits/stdc++.h"
2 using namespace std;
3

4 const unsigned int RANDOM_PRIME_NUMBER = 1001029;
5

6 struct edge_hash {
7 size_t operator() (const pair<int, int>& p) const {
8 auto h1 = hash<int>{}(p.first);
9 auto h2 = hash<int>{}(p.second);

10 return
11 static_cast<unsigned int>(h1) * RANDOM_PRIME_NUMBER +
12 static_cast<unsigned int>(h2);
13 }
14 };
15

16 int t, n, m;
17 int last_train;
18 unordered_set<pair<int, int>, edge_hash> edges;
19 vector<unordered_set<int>> train;
20 vector<int> starting;
21 vector<int> terminal;
22 unordered_map<int, vector<int>> graph;
23 unordered_map<int, int> visited;
24

25 void init() {
26 cin >> n >> m;
27 train.resize(m);
28 starting.resize(m);
29 terminal.resize(m);
30

31 int stops_number;
32 int cur_stop;
33 for (int i = 0; i < m; i++) {
34 cin >> stops_number;
35 train[i].clear();
36 train[i].reserve(stops_number);
37 for (int j = 0; j < stops_number; j++) {
38 cin >> cur_stop;

14/43

Qualification Round, 2024/2025
Task train

39 cur_stop--;
40 train[i].insert(cur_stop);
41 if (j == 0) {
42 starting[i] = cur_stop;
43 } else if (j == stops_number - 1) {
44 terminal[i] = cur_stop;
45 }
46 }
47 }
48 }
49

50 void process_input() {
51 edges.clear();
52 for (int i = 0; i <= last_train; i++) {
53 for (int j = starting[i]; j <= terminal[i]; j++) {
54 if (train[i].find(j) == train[i].end()) {
55 for (int k : train[i]) {
56 edges.emplace(j, k);
57 }
58 }
59 }
60 }
61

62 graph.clear();
63 visited.clear();
64 for (const auto& edge : edges) {
65 graph[edge.first].push_back(edge.second);
66 visited[edge.first] = 0;
67 visited[edge.second] = 0;
68 }
69 }
70

71 bool dfs(int node) {
72 visited[node] = 1;
73 for (int neighbor : graph[node]) {
74 if (visited[neighbor] == 0) {
75 if (dfs(neighbor)) {
76 return true;
77 }
78 } else if (visited[neighbor] == 1) {
79 return true;
80 }
81 }
82 visited[node] = 2;
83 return false;
84 }
85

86 bool can_toposort() {
87 process_input();
88 for (const auto& node : visited) {
89 if (node.second == 0) {
90 if (dfs(node.first)) {
91 return false;
92 }
93 }
94 }
95 return true;
96 }
97

98 int max_last_train() {
99 int left = 0;

100 int right = m - 1;
101 while (left < right) {
102 last_train = (left + right + 1) / 2;
103 if (can_toposort()) {
104 left = last_train;
105 } else {
106 right = last_train - 1;

15/43

Qualification Round, 2024/2025
Task train

107 }
108 }
109 return left;
110 }
111

112 int main() {
113 ios_base::sync_with_stdio(false);
114 cin.tie(nullptr);
115 cin >> t;
116 for (int i = 0; i < t; i++) {
117 init();
118 cout << "Case #" << i << ": " << max_last_train() + 1 << endl;
119 }
120 return 0;
121 }

Alternatively, we can also work on the relationship of the trains, to check if the rule been complied
with. We add the trains one by one. While adding a new train, we compare it with all previous
trains. In 𝒪(𝑁) time, we can tell if there’s a contradiction between the new train and one of the
previous trains: simply scan the common area of two trains and see if one is a subset of the other.
If neither is a subset of the other, there’s a contradiction. We can prove that if train 𝐴 and 𝐵
are compatible, 𝐵 and 𝐶 are compatible, 𝐶 and 𝐴 are compatible, then 𝐴, 𝐵, 𝐶 together must be
compatible. So, comparing all pairs is sufficient. This takes 𝒪(𝑀2 · 𝑁) time in total.

Subtask 2: Fixed Length Trains (15 points)
In this subtask, we work on the relationship of the trains. We use binary search to find 𝐾.
For a given 𝐾, we first assume all trains comply with the rule, and then check if there’s any
contradiction. As all trains have the same starting station and terminal station, for any two trains
𝐴 and 𝐵 that are compplient with the rule we need to have that 𝐴’s stops is either a subset or a
superset of 𝐵’s stops. In particular, if train 𝐴’s number of stops is greater than train 𝐵’s number
of stops, 𝐴’s stops must be a superset of 𝐵’s stops.

Therefore, if we sort the trains based on the number of their stops in ascending order, the trains
are actually ordered from the most “subset” to the most “superset”. Then we use the following
procedure to verify whether, in the sorted train list, the (𝑖 + 1)th train is indeed a superset of the
𝑖th train (for all 0 ≤ 𝑖 ≤ 𝑀 − 2):

• At the beginning, there are 𝑁 slots, representing the 𝑁 stations. Initially they are all marked
“empty”.

• When we process a train, we update the slots from its starting station to its terminal station.
If the train stops at a station, we change the corresponding slot to “stop”, otherwise change
it to “empty”.

• During the whole process, if there’s ever a slot being changed from “stop” to “empty”,
there must be a contradiction. Otherwise, everything is fine.

1 #include "bits/stdc++.h"
2 using namespace std;
3

4 int t, n, m;
5 int last_train;
6 vector<vector<int>> train;
7 vector<unordered_set<int>> train_set;
8

9 vector<pair<int, int>> index_and_size;
10 vector<int> slot;
11

12 void init() {
13 cin >> n >> m;
14 int stops_number;

16/43

Qualification Round, 2024/2025
Task train

15 int cur_stop;
16 train.resize(m);
17 train_set.resize(m);
18 for (int i = 0; i < m; i++) {
19 cin >> stops_number;
20 train[i].clear();
21 train[i].reserve(stops_number);
22 train_set[i].clear();
23 train_set[i].reserve(stops_number);
24 for (int j = 0; j < stops_number; j++) {
25 cin >> cur_stop;
26 train[i].push_back(cur_stop);
27 train_set[i].insert(cur_stop);
28 }
29 }
30 }
31

32 void toposort() {
33 index_and_size.clear();
34 for (int i = 0; i < m; ++i) {
35 index_and_size.push_back({i, train[i].size()});
36 }
37 sort(index_and_size.begin(), index_and_size.end(),
38 [](const std::pair<int, int>& a, const std::pair<int, int>& b) {
39 return a.second < b.second;
40 }
41);
42 }
43

44 bool comply() {
45 slot.resize(n);
46 for (int i = 0; i < n; i++) {
47 slot[i] = false;
48 }
49 for (int i = 0; i < m; i++) {
50 int train_index = index_and_size[i].first;
51 if (train_index > last_train) {
52 continue;
53 }
54 for (int j = train[train_index].front(); j <= train[train_index].back(); j++) {
55 if (train_set[train_index].find(j) != train_set[train_index].end()) {
56 slot[j] = true;
57 } else {
58 if (slot[j] == true) {
59 return false;
60 }
61 }
62 }
63 }
64 return true;
65 }
66

67 int max_last_train() {
68 int left = 0;
69 int right = m - 1;
70 while (left < right) {
71 last_train = (left + right + 1) / 2;
72 if (comply()) {
73 left = last_train;
74 } else {
75 right = last_train - 1;
76 }
77 }
78 return left;
79 }
80

81 int main() {
82 ios_base::sync_with_stdio(false);

17/43

Qualification Round, 2024/2025
Task train

83 cin.tie(nullptr);
84 cin >> t;
85 for (int i = 0; i < t; i++) {
86 init();
87 toposort();
88 cout << "Case #" << i << ": " << max_last_train() + 1 << endl;
89 }
90 return 0;
91 }

Subtask 3: Medium Railway Line (20 points)
Similar to last subtask, we use binary search to find 𝐾. For a given 𝐾, we assume all trains comply
with the rule, and sort the trains from the most “subset” to the most “superset” similarly. Unlike
the last subtask, our customized comparator of two trains is no longer comparing their total
stops, but comparing the number of stops in their common area. If we pre-calculate a prefix
array, we can get the number of stations in a given interval in 𝒪(1), thus finish each comparison
in 𝒪(1).
Then we can use the same method as last subtask, to process the trains one by one from
the most “subset” to the most “superset”, and see if there’s any contradiction. This takes
𝒪((𝑀 + 𝑁)2 · log(𝑀)) time in total.

We will share the base code of the last subtask and only replace the following two functions:
1 void init() {
2 cin >> n >> m;
3 int stops_number;
4 int cur_stop;
5 train.clear();
6 train.resize(m);
7 train_set.clear();
8 train_set.resize(m);
9 prefix.clear();

10 prefix.resize(m, vector<int>(n));
11 for (int i = 0; i < m; i++) {
12 cin >> stops_number;
13 train[i].clear();
14 train[i].reserve(stops_number);
15 train_set[i].clear();
16 train_set[i].reserve(stops_number);
17 for (int j = 0; j < stops_number; j++) {
18 cin >> cur_stop;
19 train[i].push_back(cur_stop);
20 train_set[i].insert(cur_stop);
21 }
22

23 if (train_set[i].find(0) != train_set[i].end()) {
24 prefix[i][0] = 1;
25 } else {
26 prefix[i][0] = 0;
27 }
28 for (int j = 1; j < n; j++) {
29 prefix[i][j] = prefix[i][j - 1];
30 if (train_set[i].find(j) != train_set[i].end()) {
31 prefix[i][j]++;
32 }
33 }
34 }
35

36 edges.clear();
37 for (int i = 0; i < m - 1; i++) {
38 for (int j = i + 1; j < m; j++) {
39 int common_left = max(train[i].front(), train[j].front());
40 int common_right = min(train[i].back(), train[j].back());

18/43

Qualification Round, 2024/2025
Task train

41 if (common_left <= common_right) {
42 int stops_i = prefix[i][common_right] -
43 (common_left == 0 ? 0 : prefix[i][common_left - 1]);
44 int stops_j = prefix[j][common_right] -
45 (common_left == 0 ? 0 : prefix[j][common_left - 1]);
46 if (stops_i < stops_j) {
47 edges.emplace(i, j);
48 } else if (stops_i > stops_j) {
49 edges.emplace(j, i);
50 }
51 }
52 }
53 }
54 }
55

56 bool toposort() {
57 topo_order.clear();
58 topo_order.reserve(m);
59 in_degree.clear();
60 in_degree.resize(m);
61 adj_list.clear();
62 adj_list.resize(m);
63 for (int i = 0; i <= last_train; i++) {
64 in_degree[i] = 0;
65 adj_list[i].clear();
66 }
67 for (const auto& edge : edges) {
68 int u = edge.first, v = edge.second;
69 if ((u <= last_train) && (v <= last_train)) {
70 adj_list[u].push_back(v);
71 in_degree[v]++;
72 }
73 }
74 queue<int> q;
75 for (int node = 0; node <= last_train; node++) {
76 if (in_degree[node] == 0) {
77 q.push(node);
78 }
79 }
80 while (!q.empty()) {
81 int node = q.front();
82 q.pop();
83 topo_order.push_back(node);
84 for (int neighbor : adj_list[node]) {
85 in_degree[neighbor]--;
86 if (in_degree[neighbor] == 0) {
87 q.push(neighbor);
88 }
89 }
90 }
91 if (topo_order.size() != (last_train + 1)) {
92 return false;
93 }
94 return true;
95 }

Subtask 4: Direct Trains (16 points)
See the first solution of the next subtask. Here the trains don’t have any intermediate stop, one
train corresponds to one hop. In this case, a valid forest must be toposortable. Therefore, we only
need to implement Step 0 and Step 1.

19/43

Qualification Round, 2024/2025
Task train

Subtask 5: Long Railway Line (26 points)
Similar to previous subtasks, we use binary search to find 𝐾. For a given 𝐾, we want to check if
the first 𝐾 trains together are valid.

• Step 0: Preparing the hops

– For a train that has stops 1,2,4,9,15, we say it has 4 hops: 1->2, 2->4, 4->9, and
9->15.

– As 5->6 is fully contained in 4->9, we say 4->9 is the parent of 5->6.

– We put the hops of all 𝐾 trains into a set (not multiset).

• Step 1: Checking if the hops (in the set) form a forest

– For example, a valid forest may look like:

1---------------->5 5------>8 10--------------->15
\ / \ / \ /

1----------->4 4->5 5->6 6->8 10->11 11-------->15
\ | / \ /
1->2 2->3 3->4 11->12 12->15

– The purpose is to prevent two hops like:

1----->5
3------>7

– There’re various ways to do the check. One way is: we sort all the hops by the starting
point. For the hops with the smallest starting point (e.g. 1->5, 1->4, 1->2), we know
the longest (1->5) must be one of the roots and the second longest (1->4) must be a
child of that root. With some recursive calculation, we can finish the check of this tree.
And then we continue with the next hops.

While checking the above scenario that we want to prevent (1->5, 3->7), after we
determine that 1->5 is the root node, as 3 ≤ 5, we would conclude that 3->7 is in the
subtree rooted at 1->5. However, as 7 > 5, which means 3->7 is not fully contained in
the root 1->5, we find a contradiction.

• Step 2: Checking if the graph of trains is toposortable

– We first define the topological order. For example:

Train A: 1->2, 2->3, 3------->5
Train B: 1------->3, 3------->5

If train 𝐴 has a hop 𝑎 (e.g. 1->2), and 𝐵 has a hop 𝑏 (e.g. 1->3), such that 𝑎 is a child
of 𝑏 (in the hops forest), we will construct a directed edge from train 𝐴 to 𝐵.

– The purpose is to prevent two trains like:

Train A: 1->2, 2->3, 3------->5
Train B: 1------->3, 3->4, 4->5

which is not toposortable because we have both edges from 𝐴 to 𝐵 and from 𝐵 to 𝐴.

– There’re various ways to do the check. One way is:

while (there're still remaining trains) {
delete all the trains that only contain leaf hops
(as defined in the hops forest);
delete all the leaf hops (from the hops forest)
no longer in any remaining train;

}

20/43

Qualification Round, 2024/2025
Task train

If in the end, all the trains are deleted, then they are valid. Otherwise if it is an infinite
loop, they are not valid.

Overall, it can be proved that the time complexity is no more than 𝒪(𝑖𝑛𝑝𝑢𝑡 · log(𝑖𝑛𝑝𝑢𝑡)). It can be
further improved but it’s not necessary for this subtask. To help understand the above algorithm,
here are the example executions for a given 𝐾:

• Example 1

Train A: 1------->5
Train B: 1->3, 3---->7

As hop 1->5 and 3->7 cannot form a forest, they are invalid.

• Example 2

Train A: 1->2, 2->3, 3------->5
Train B: 1------->3, 3->4, 4->5

We have the hops forest:

1------>3 3------>5
\ / \ /

1->2 2->3 3->4 4->5

No train can be deleted because none of the trains only contain leaf hops. So they are not
valid.

• Example 3

Train A: 1->2, 2->3, 3------->5
Train B: 1------->3, 3------->5

We have the hops forest:

1------>3 3------>5
\ /

1->2 2->3

As train 𝐴 only contains leaf hops, it will be deleted. Then as 1->2 and 2->3 no longer
exist in the remaining train, they’re deleted from the hops forest. We will see the following
remainder:

Train B: 1------->3, 3------->5

with the updated hops forest:

1------>3 3------->5

Then 1->3 becomes a leaf hop. Therefore, in the next iteration, train 𝐵 will be deleted. In
the end, all trains are deleted so they’re valid.

1 #include "bits/stdc++.h"
2 using namespace std;
3

4 const unsigned int RANDOM_PRIME_NUMBER = 1001029;
5 const int NONEXISTENT = -1;
6

7 struct hops_set_compare {
8 bool operator()(const pair<int, int>& a, const pair<int, int>& b) const {
9 if (a.first != b.first) {

10 return a.first < b.first;
11 } else {
12 return a.second > b.second;
13 }
14 }
15 };

21/43

Qualification Round, 2024/2025
Task train

16

17 struct hops_map_hash {
18 std::size_t operator() (const std::pair<int, int>& p) const {
19 auto h1 = std::hash<int>{}(p.first);
20 auto h2 = std::hash<int>{}(p.second);
21 return static_cast<unsigned int>(h1) * RANDOM_PRIME_NUMBER +
22 static_cast<unsigned int>(h2);
23 }
24 };
25

26 struct train_type {
27 // index in the train array
28 int index;
29 // number of non-leaf hops
30 int count;
31

32 train_type(int index, int count) : index(index), count(count) {}
33

34 bool operator<(const train_type& other) const {
35 if (count == other.count) {
36 return index < other.index;
37 }
38 return count < other.count;
39 }
40 };
41

42 struct forest_node_type {
43 // index in the hops array
44 int index;
45 // number of children
46 int count;
47

48 forest_node_type(int index, int count) : index(index), count(count) {}
49

50 bool operator<(const forest_node_type& other) const {
51 if (count == other.count) {
52 return index < other.index;
53 }
54 return count < other.count;
55 }
56 };
57

58 int t, n, m;
59 int last_train;
60 set<pair<int, int>, hops_set_compare> hops_set;
61 vector<vector<int>> train;
62 set<train_type> train_set;
63 vector<int> train_hop_count;
64

65 int hops_number;
66 vector<pair<int, int>> hops;
67 vector<int> parent;
68 vector<vector<int>> children;
69 vector<int> children_count;
70 // hop : index in hops array
71 unordered_map<pair<int, int>, int, hops_map_hash> hops_map;
72 // index in the hops array -> index in the train array
73 vector<unordered_set<int>> hop_train;
74 // for each leaf, we wait for all relevant trains being removed, and then remove it
75 set<forest_node_type> forest_nodes_one;
76 // for each leaf, we immediately remove such hop in all relevant trains, and then remove it
77 set<forest_node_type> forest_nodes_two;
78

79 void init() {
80 cin>>n>>m;
81 int stops_number;
82 int cur_stop;
83 train.clear();

22/43

Qualification Round, 2024/2025
Task train

84 train.resize(m);
85 for (int i = 0; i < m; i++) {
86 cin>>stops_number;
87 train[i].reserve(stops_number);
88 for (int j = 0; j < stops_number; j++) {
89 cin>>cur_stop;
90 train[i].push_back(cur_stop);
91 }
92 }
93 }
94

95 void process_input() {
96 hops_set.clear();
97 for (int i = 0; i <= last_train; i++) {
98 for (int j = 0; j < train[i].size() - 1; j++) {
99 hops_set.emplace(train[i][j], train[i][j + 1]);

100 }
101 }
102

103 hops_number = hops_set.size();
104 hops_map.clear();
105 hops_map.reserve(hops_number);
106 int i = 0;
107 hops.clear();
108 hops.resize(hops_number);
109 for (const auto& p : hops_set) {
110 hops[i] = p;
111 assert(hops_map.insert({p, i}).second);
112 i++;
113 }
114 assert(i == hops_number);
115

116 parent.assign(hops_number, NONEXISTENT);
117 children.assign(hops_number, vector<int>());
118 }
119

120 // Return the index of the first hop after the current subtree, it should also
121 // be the root of the next tree.
122 // Return NONEXISTENT if we see any contradiction.
123 int construct_tree(int hop_index) {
124 int current_index = hop_index + 1;
125 int current_stop = hops[hop_index].first;
126 while ((current_index < hops_number) &&
127 (hops[current_index].first < hops[hop_index].second)) {
128 assert(hops[current_index].first >= current_stop);
129 if (hops[current_index].second > hops[hop_index].second) {
130 return NONEXISTENT;
131 }
132 parent[current_index] = hop_index;
133 children[hop_index].push_back(current_index);
134 current_stop = hops[current_index].second;
135 current_index = construct_tree(current_index);
136 if (current_index == NONEXISTENT) {
137 return NONEXISTENT;
138 }
139 }
140 return current_index;
141 }
142

143 bool construct_forest() {
144 int current_index = 0;
145 while (current_index < hops_number) {
146 current_index = construct_tree(current_index);
147 if (current_index == NONEXISTENT) {
148 return false;
149 }
150 }
151 return true;

23/43

Qualification Round, 2024/2025
Task train

152 }
153

154 void prepare_data() {
155 children_count.clear();
156 children_count.resize(hops_number);
157 for (int i = 0; i < hops_number; i++) {
158 children_count[i] = children[i].size();
159 }
160

161 train_set.clear();
162 train_hop_count.clear();
163 train_hop_count.resize(m);
164 for (int i = 0; i <= last_train; i++) {
165 train_set.insert(train_type(i, train[i].size() - 1));
166 train_hop_count[i] = train[i].size() - 1;
167 }
168

169 hop_train.assign(hops_number, unordered_set<int>());
170 for (int i = 0; i <= last_train; i++) {
171 for (int j = 0; j < train[i].size() - 1; j++) {
172 pair<int, int> current_hop = {train[i][j], train[i][j + 1]};
173 assert(hops_map.find(current_hop) != hops_map.end());
174 int hop_index = hops_map[current_hop];
175 hop_train[hop_index].insert(i);
176 }
177 }
178

179 forest_nodes_one.clear();
180 forest_nodes_two.clear();
181 for (int i = 0; i < hops_number; i++) {
182 forest_nodes_one.insert(forest_node_type(i, children[i].size()));
183 forest_nodes_two.insert(forest_node_type(i, children[i].size()));
184 }
185 }
186

187 void remove_leaf_from_train() {
188 while ((!forest_nodes_two.empty()) && (forest_nodes_two.begin()->count == 0)) {
189 for (int train_index : hop_train[forest_nodes_two.begin()->index]) {
190 train_set.erase(train_type(train_index, train_hop_count[train_index]));
191 assert(train_hop_count[train_index] > 0);
192 train_hop_count[train_index]--;
193 train_set.insert(train_type(train_index, train_hop_count[train_index]));
194 }
195 forest_nodes_two.erase(forest_nodes_two.begin());
196 }
197 }
198

199 void remove_leaf_from_forest(int hop_index) {
200 assert(children_count[hop_index] == 0);
201 assert(forest_nodes_one.erase(forest_node_type(hop_index, 0)) == 1);
202 if (parent[hop_index] != NONEXISTENT) {
203 int parent_index = parent[hop_index];
204 forest_node_type parent_node =
205 forest_node_type(parent_index, children_count[parent_index]);
206 assert(forest_nodes_one.erase(parent_node) == 1);
207 assert(forest_nodes_two.erase(parent_node) == 1);
208 children_count[parent_index]--;
209 parent_node.count--;
210 forest_nodes_one.insert(parent_node);
211 forest_nodes_two.insert(parent_node);
212 }
213 }
214

215 void remove_zero_hop_train() {
216 while ((!train_set.empty()) && (train_set.begin()->count == 0)) {
217 int train_index = train_set.begin()->index;
218 for (int i = 0; i < train[train_index].size() - 1; i++) {
219 pair<int, int> current_hop = {train[train_index][i], train[train_index][i + 1]};

24/43

Qualification Round, 2024/2025
Task train

220 assert(hops_map.find(current_hop) != hops_map.end());
221 int hop_index = hops_map[current_hop];
222 assert(hop_train[hop_index].erase(train_index) == 1);
223 if (hop_train[hop_index].size() == 0) {
224 remove_leaf_from_forest(hop_index);
225 }
226 }
227 train_set.erase(train_set.begin());
228 }
229 }
230

231 bool comply_rule() {
232 process_input();
233 if (!construct_forest()) {
234 return false;
235 }
236 prepare_data();
237 int last_forest_node_number = forest_nodes_one.size();
238 int last_train_number = train_set.size();
239 while ((last_forest_node_number > 0) || (last_train_number > 0)) {
240 remove_leaf_from_train();
241 remove_zero_hop_train();
242 if ((last_forest_node_number == forest_nodes_one.size()) &&
243 (last_train_number == train_set.size())) {
244 return false;
245 }
246 last_forest_node_number = forest_nodes_one.size();
247 last_train_number = train_set.size();
248 }
249 return true;
250 }
251

252 int max_last_train() {
253 int left = 0;
254 int right = m - 1;
255 while (left < right) {
256 last_train = (left + right + 1) / 2;
257 if (comply_rule()) {
258 left = last_train;
259 } else {
260 right = last_train - 1;
261 }
262 }
263 return left;
264 }
265

266 int main() {
267 ios_base::sync_with_stdio(false);
268 cin.tie(nullptr);
269 cin>>t;
270 for (int i = 0; i < t; i++) {
271 init();
272 cout << "Case #" << i << ": " << max_last_train() + 1 << "\n";
273 }
274 return 0;
275 }

Alternatively, we may regard a station as a vertex. In addition to the algorithm that constructs
a graph of stations in the first subtask, we will also add each train as an intermediary "virtual
vertex". To be specific: for a train, add edges from all the stop stations towards the "virtual vertex",
and add edges from the "virtual vertex" towards all non-stop stations. With this strategy, we can
avoid direct edges from stop stations to non-stop stations, and largely reduced the number of
edges. However at this stage, the graph still has 𝒪(𝑁 ·𝑀) edges in the worst case, and cannot
handle large amount of trains and stations within the time limit of this subtask.

To further reduce the time complexity, we can use a binary tree (e.g. segment tree, sparse
table) over the stations. While constructing edges, instead of adding an edge from "virtual

25/43

Qualification Round, 2024/2025
Task train

vertex" towards each single non-stop station, we add an edge towards a bunch of consecutive
stations.

For example, 𝑁 = 8 and we have stations 0, 1, ..., 7. We prepare the following binary tree. Each
leaf node represents a station, each non-leaf node represents some consecutive stations.

[0..7]
[0..3] [4..7]
[0..1] [2..3] [4..5] [6..7]
[0][1] [2][3] [4][5] [6][7]

If a train stops at stations 1, 4, 7, then we will construct edges [1]->v, [4]->v, [7]->v and
v->[2..3], v->[5], v->[6]. With this approach, we will have at most 𝒪(𝑖𝑛𝑝𝑢𝑡 · log(𝑁)) edges,
and thus reduce the time complexity to 𝒪(𝑖𝑛𝑝𝑢𝑡 · log(𝑁) · log(𝑀)). It can be further improved
but this would be enough to solve this subtask.

26/43

Qualification Round, 2024/2025
Task hikingsigns

Hiking Signs
Task Idea Johannes Kapfhammer
Task Preparation Johannes Kapfhammer, Yaël Arn
Description English Johannes Kapfhammer
Description German Charlotte Knierim
Solution Charlotte Knierim, Yaël Arn, Johannes Kapfhammer

Observation 1. For a given tree with at least 3 vertices, the set of hiking signs is unique if and only if
every vertex has at most one neighbor whose subtree does not have a landmark.

Proof. To see that it is necessary to have at most one neighbor whose subtree does not have a
landmark, assume there is a vertex 𝑣 that has two neighbors 𝑢 and 𝑤 that do not have a landmark
in their subtree. Then from both 𝑢 and 𝑤, all landmarks are reached by going through 𝑣. As
both 𝑢 and 𝑤 have distance 1 to 𝑣, this means their hiking signs are identical.

For the other direction, assume the hiking signs are not unique. Assume there is at least one
landmark as else the condition is satisfied trivially. Then, we have two distinct vertices 𝑢 and 𝑤
that have identical hiking signs. Consider the unique path between 𝑢 and 𝑤 in the tree. If there
was a landmark in the subtree of 𝑢 or 𝑤 that does not intersect the path, then the hiking signs
cannot be identical as the distance from the landmark in the subtree below 𝑢 or 𝑤 cannot have
the same distance to both.

Thus all landmarks need to be on the path or in subtrees branching of from the path. As 𝑢 and
𝑤 need to have equal distance to all landmarks, the only vertex on the path that can contain
landmarks in its subtree is the one which is in the middle of the path at equal distance of 𝑢 and 𝑤.
If the path has an even number of vertices then such a vertex does not exists (and the existence of
𝑢 and 𝑤 implies that there are no landmarks in the tree). In case the path has an odd number of
vertices, let 𝑣 be the middle vertex and let 𝑠 and 𝑡 be its neighbors on the path (note that we can
have 𝑠 = 𝑢 and 𝑡 = 𝑤). Observe that, from the perspective of 𝑣, neither the subtree of 𝑠 nor the
subtree of 𝑡 can have a landmark, concluding the proof of the fact. □

Subtask 1: 13 Points
In this subtask we need to check if a given tree satisfies the condition mentioned above. Note
that in here the answer will always be 0 or impossible. We can do this by starting a DFS in a
vertex that contains a landmark (if none exists the answer is impossible as soon as the tree has 2
or more vertices) and count the number of subtrees that do not have a landmark.
1 #include<bits/stdc++.h>
2

3 using namespace std;
4

5 int dfs(int v, int p, vector<bool> &landmarks, vector<vector<int>> &g) {
6 bool has_landmarks = landmarks[v];
7 int no_landmark_count = 0;
8

9 for (int w: g[v]) {
10 if (w == p) continue;
11 int is_marked = dfs(w, v, landmarks, g);
12 if (is_marked == -1) return -1;
13 if (is_marked == 0) no_landmark_count++;
14 else has_landmarks = true;
15 }
16

17 if (no_landmark_count > 1) return -1; // too many unmarked subtrees
18 else return has_landmarks;

27/43

Qualification Round, 2024/2025
Task hikingsigns

19 }
20

21 signed main() {
22 int t;
23 cin >> t;
24

25 for (int c = 0; c < t; ++c) {
26 int n, m, k;
27 cin >> n >> m >> k;
28

29 vector<bool> landmarks(n);
30 for (int i = 0; i < k; ++i) {
31 int l;
32 cin >> l;
33 landmarks[l] = true;
34 }
35 vector<vector<int>> g(n);
36 for (int i = 0; i < m; ++i) {
37 int a, b;
38 cin >> a >> b;
39 g[a].push_back(b);
40 g[b].push_back(a);
41 }
42

43 int res = -1;
44 for (int i = 0; i < n; ++i) {
45 if (landmarks[i]) {
46 res = dfs(i, -1, landmarks, g);
47 break;
48 }
49 }
50 if (res == -1 && n >= 2) cout << "Case #" << c << ": Impossible" << '\n';
51 else cout << "Case #" << c << ": 0" << '\n';
52 }
53 }

This code runs in 𝒪(𝑛) and uses 𝒪(𝑛) memory.

Subtask 2: 15 Points
In this subtask, we have a tree on 𝑀 + 1 vertices and 𝑁 − 𝑀 − 1 isolated vertices that are all
landmarks.

If the tree has a landmark, we can then start a DFS from a landmark in the tree and identify all
the vertices that violate the condition. Then we can fix this by adding an edge from a vertex not
yet in the tree (that is guaranteed to be a landmark) to one of the subtrees causing the violation.
Note that we have to be careful about the order in which we process the vertices to assure that we
do not add too many edges. We do this by adding an edge to a landmark as soon as we violate
the condition for the current vertex in the dfs. We will show in subtask 4 that it is always optimal
to do it this way.

Otherwise, if 𝑀 = 0, we are done, as one isolated vertex is not a problem. If 𝑀 > 0, we can go
through all vertices and see what happens if we connected it to a landmark. After the connection,
the solution for a tree with landmark can be used to determine how many extra edges this would
require. By taking the minimum over all vertices, we get the desired solution.
1 #include <bits/stdc++.h>
2

3 using namespace std;
4

5 bool dfs(int n, int p, int &free_landmark, vector<vector<int>> &g, vector<bool> &is_landmark,
6 vector<pair<int, int>> &extra_edges) {
7 int num_marked = 0, num_unmarked = 0;
8 for (auto w: g[n]) {

28/43

Qualification Round, 2024/2025
Task hikingsigns

9 if (w == p) continue;
10 bool is_marked = dfs(w, n, free_landmark, g, is_landmark, extra_edges);
11 if (is_marked) {
12 num_marked += 1;
13 } else if (num_unmarked == 1) {
14 // we already have an unmarked subtree, this one must have a sign
15 extra_edges.emplace_back(w, free_landmark++);
16 num_marked += 1;
17 } else {
18 num_unmarked += 1;
19 }
20 }
21 return num_marked > 0 || is_landmark[n];
22 }
23

24 int main() {
25 int t;
26 cin >> t;
27

28 for (int c = 0; c < t; ++c) {
29 int n, m, k;
30 cin >> n >> m >> k;
31

32 vector<bool> is_landmark(n, false);
33 for (int i = 0; i < k; ++i) {
34 int l;
35 cin >> l;
36 is_landmark[l] = true;
37 }
38 vector<vector<int>> g(m + 1);
39 for (int i = 0; i < m; ++i) {
40 int a, b;
41 cin >> a >> b;
42 g[a].push_back(b);
43 g[b].push_back(a);
44 }
45 cout << "Case #" << c << ": ";
46 vector<pair<int, int>> extra_edges;
47 bool has_landmark = false;
48 bool is_path = true;
49 for (int i = 0; i <= m; ++i) {
50 has_landmark = has_landmark || is_landmark[i];
51 is_path = is_path && g[i].size() < 3;
52 }
53 if (has_landmark) {
54 for (int i = 0; i <= m; ++i) {
55 if (is_landmark[i]) {
56 int extra_landmarks = m + 1;
57 dfs(i, i, extra_landmarks, g, is_landmark, extra_edges);
58 break;
59 }
60 }
61 }
62 else {
63 for (int i = 0; i <= m; ++i) {
64 if (g[i].size() > 0) { // if M = 0, we don't need a landmark
65 int extra_landmarks = m + 2;
66 vector<pair<int,int>> potential_extra_edges;
67 potential_extra_edges.push_back({m + 1, i});
68 dfs(i, i, extra_landmarks, g, is_landmark, potential_extra_edges);
69 if (potential_extra_edges.size() < extra_edges.size() || extra_edges.empty())
70 extra_edges = potential_extra_edges;
71 }
72 }
73 }
74

75 if (extra_edges.size() + m < n) {
76 cout << extra_edges.size() << '\n';

29/43

Qualification Round, 2024/2025
Task hikingsigns

77 for (auto [a, b]: extra_edges)
78 cout << a << ' ' << b << '\n';
79 } else {
80 cout << "Impossible\n";
81 }
82 }
83 }

This code runs in 𝒪(𝑛2) and uses 𝒪(𝑛) memory.

Actually, due to one wrong number in the judge, there was always at least one landmark in the
tree, so the 𝒪(𝑛2) part was never executed.

Subtask 3: 16 Points
In this subtask, we are given a collection of paths. For every of these paths we can check if its
hiking signs are unique. Note that for paths, this is the case exactly when we have at least two
landmarks or one landmark at the end of the chain. We pair up the paths violating the condition
that have a landmark, connecting them by adding an edge between two of their endpoints. Note
that we can have exactly one isolated vertex that is not a landmark and all paths that are longer
need at least one landmark. We connect each path without a landmark (except for potentially the
isolated vertex we can keep) to a path with at least one landmark.
1 #include "bits/stdc++.h"
2

3 using namespace std;
4

5 struct Path {
6 pair<int, int> endpoints;
7

8 bool has_landmark;
9 bool valid;

10 };
11

12 Path dfs(int n, vector<vector<int>> &g, vector<bool> &is_landmark, vector<bool> &vis) {
13 vis[n] = true;
14 Path res = {{-1, -1}, is_landmark[n], false};
15

16 for (auto w: g[n]) {
17 if (vis[w]) continue;
18 auto sub_path = dfs(w, g, is_landmark, vis);
19 res.endpoints = sub_path.endpoints;
20 if (res.has_landmark && sub_path.has_landmark) res.valid = true;
21 res.has_landmark = res.has_landmark || sub_path.has_landmark;
22 res.valid = res.valid || sub_path.valid;
23 }
24 if (g[n].size() < 2) {
25 if (res.endpoints.first == -1) res.endpoints.first = n;
26 else res.endpoints.second = n;
27 if (g[n].empty()) res.endpoints.second = n; // single vertex
28 if (is_landmark[n]) res.valid = true;
29 }
30 return res;
31 }
32

33

34 signed main() {
35 int t;
36 cin >> t;
37

38 for (int c = 0; c < t; ++c) {
39 int n, m, k;
40 cin >> n >> m >> k;
41

42 vector<bool> landmarks(n);

30/43

Qualification Round, 2024/2025
Task hikingsigns

43 for (int i = 0; i < k; ++i) {
44 int l;
45 cin >> l;
46 landmarks[l] = true;
47 }
48 vector<vector<int>> g(n);
49 for (int i = 0; i < m; ++i) {
50 int a, b;
51 cin >> a >> b;
52 g[a].push_back(b);
53 g[b].push_back(a);
54 }
55 vector<bool> vis(n);
56 vector<Path> valid_paths;
57 vector<Path> empty_paths;
58 vector<Path> invalid_paths;
59 bool has_isolated_vertex = false;
60 for (int i = 0; i < n; ++i) {
61 if (g[i].size() < 2 && !vis[i]) {
62 auto path = dfs(i, g, landmarks, vis);
63 if (!path.has_landmark) {
64 if (path.endpoints.second == path.endpoints.first && !has_isolated_vertex) {
65 has_isolated_vertex = true;
66 continue;
67 }
68 empty_paths.push_back(path);
69 } else if (path.valid) {
70 // if we have a single-landmark valid path, don't connect wrong endpoints.
71 if (landmarks[path.endpoints.second]) swap(path.endpoints.first,path.endpoints.second);
72 valid_paths.push_back(path);
73 } else invalid_paths.push_back(path);
74 }
75 }
76 cout << "Case #" << c << ": ";
77 vector<pair<int, int>> extra_edges;
78 while (!invalid_paths.empty()) {
79 if (invalid_paths.size() >= 2) {
80 Path a = invalid_paths.back();
81 invalid_paths.pop_back();
82 Path b = invalid_paths.back();
83 invalid_paths.pop_back();
84 valid_paths.push_back({{b.endpoints.first, a.endpoints.first}, true, true});
85 extra_edges.push_back({a.endpoints.second, b.endpoints.second});
86 } else if (invalid_paths.size() == 1) {
87 if (valid_paths.empty()) {
88 cout << "Impossible\n";
89 break;
90 }
91 Path a = invalid_paths.back();
92 invalid_paths.pop_back();
93 Path b = valid_paths.back();
94 valid_paths.pop_back();
95 valid_paths.push_back({{a.endpoints.first, b.endpoints.first}, true, true});
96 extra_edges.push_back({a.endpoints.second, b.endpoints.second});
97 }
98 }
99 if (!invalid_paths.empty()) continue;

100 while (!empty_paths.empty()) {
101 if (valid_paths.empty()) {
102 cout << "Impossible\n";
103 break;
104 }
105 Path a = valid_paths.back();
106 valid_paths.pop_back();
107 Path b = empty_paths.back();
108 empty_paths.pop_back();
109 // be careful with single-sign paths
110 valid_paths.push_back({{a.endpoints.first, b.endpoints.first}, true, true});

31/43

Qualification Round, 2024/2025
Task hikingsigns

111 extra_edges.push_back({a.endpoints.second, b.endpoints.second});
112 }
113 if (!empty_paths.empty()) continue;
114

115 cout << extra_edges.size() << '\n';
116 for (auto [a, b]: extra_edges)
117 cout << a << ' ' << b << '\n';
118

119 }
120 }

Subtask 4: 27 Points
In this subtask, we don’t have any components without landmark. For components with a
landmark, we define connection points:

Definition 1 (Connection Point). We define a connection point to be a vertex which needs to be
connected to a component with a landmark in order for the current component to be valid.

Observation 2. The procedure from subtask 2 finds a minimal subset of connection points in a component
with a landmark.

Proof. Assume the contrary, that a set 𝐴 of connection points exists such that it is smaller than the
set generated in subtask 2. Root the tree at some landmark. Then, consider running the procedure
as in subtask 2. Consider some vertex such that we add less connection points according to 𝐴 in
the subtrees which have no connection point or landmark yet. This vertex must exist, as in total
we add less connection points, and we never add a connection point to a subtree which already
contains a landmark or connection point in subtask 2. This vertex then violates the condition for
a valid component which we discussed in observation 1 because we have at least two subtrees
which do not contain a landmark or connection point. So 𝐴 can not exist, and our procedure is
optimal. □

To make the input forest valid, we thus can for each component find out all the connection points
in the same way as in subtask 2. A component is valid exactly when it contains no connection
points. So we see that when we add an edge between two connection points, we decrease the
total number of connection points by two. If we connect a valid component and a connection
point, we decrease the number of connection points by one. So we want to maximize the number
of times we connect two connection points in order to minimize the number of edges. This can
be done by always connecting the two components with the maximum amount of connection
points into one new component. This way, we always avoid merging components into a valid
component which can not be used any more for merging connection points by two. When only
one invalid components remains, we repeatedly connect it to the other components. If at some
point we run out of components to connect, we output impossible.

1 #include <bits/stdc++.h>
2

3 using namespace std;
4

5 struct Component {
6 vector<int> connection_points;
7

8 int landmark;
9 };

10

11 bool dfs(int n, vector<vector<int>> &g, vector<bool> &is_landmark, vector<bool> &vis,
12 Component &comp) {
13 vis[n] = true;
14 int num_marked = 0, num_unmarked = 0;
15 for (auto w: g[n]) {
16 if (vis[w]) continue;
17 bool is_marked = dfs(w, g, is_landmark, vis, comp);

32/43

Qualification Round, 2024/2025
Task hikingsigns

18 if (is_marked) {
19 num_marked += 1;
20 } else if (num_unmarked == 1) {
21 // we already have an unmarked subtree, this one must have a sign
22 comp.connection_points.push_back(w);
23 num_marked += 1;
24 } else {
25 num_unmarked += 1;
26 }
27 }
28 return num_marked > 0 || is_landmark[n];
29 }
30

31 int main() {
32 int t;
33 cin >> t;
34

35 for (int c = 0; c < t; ++c) {
36 int n, m, k;
37 cin >> n >> m >> k;
38

39 vector<bool> is_landmark(n, false);
40 for (int i = 0; i < k; ++i) {
41 int l;
42 cin >> l;
43 is_landmark[l] = true;
44 }
45 vector<vector<int>> g(n);
46 for (int i = 0; i < m; ++i) {
47 int a, b;
48 cin >> a >> b;
49 g[a].push_back(b);
50 g[b].push_back(a);
51 }
52 cout << "Case #" << c << ": ";
53 vector<bool> vis(n, false);
54 vector<Component> valid_components;
55 vector<Component> invalid_components;
56 for (int i = 0; i < n; ++i) {
57 if (is_landmark[i] && !vis[i]) {
58 Component comp;
59 comp.landmark = i;
60 dfs(i, g, is_landmark, vis, comp);
61 if (comp.connection_points.empty()) valid_components.push_back(comp);
62 else invalid_components.push_back(comp);
63 }
64 }
65 vector<pair<int, int>> extra_edges;
66 std::sort(invalid_components.begin(), invalid_components.end(),
67 [](Component &l, Component &r)
68 { return l.connection_points.size() < r.connection_points.size(); });
69 while (!invalid_components.empty()) {
70 if (invalid_components.size() == 1 && valid_components.empty()) break;
71 if (invalid_components.size() >= 2) {
72 Component a = invalid_components.back();
73 invalid_components.pop_back();
74 Component b = invalid_components.back();
75 invalid_components.pop_back();
76 extra_edges.push_back({a.connection_points.back(), b.connection_points.back()});
77 a.connection_points.pop_back();
78 b.connection_points.pop_back();
79 a.connection_points.insert(a.connection_points.end(), b.connection_points.begin(),
80 b.connection_points.end());
81 if (a.connection_points.empty()) valid_components.push_back(a);
82 else invalid_components.push_back(a);
83 } else if (invalid_components.size() == 1) {
84 Component a = invalid_components.back();
85 invalid_components.pop_back();

33/43

Qualification Round, 2024/2025
Task hikingsigns

86 Component b = valid_components.back();
87 valid_components.pop_back();
88 extra_edges.push_back({a.connection_points.back(), b.landmark});
89 a.connection_points.pop_back();
90 if (a.connection_points.empty()) valid_components.push_back(a);
91 else invalid_components.push_back(a);
92 }
93 }
94 if (invalid_components.empty()) {
95 cout << extra_edges.size() << '\n';
96 for (auto [a, b]: extra_edges)
97 cout << a << ' ' << b << '\n';
98 } else {
99 cout << "Impossible\n";

100 }
101 }
102 }

This code runs in 𝒪(𝑛2) because of the (inefficient) merging of the components and uses 𝒪(𝑛)
memory.

It can be optimized to run in 𝒪(𝑛 log 𝑛) by using the smaller to larger technique, but this was not
required in this task.

Subtask 5: 29 Points
In this subtask, we have to deal with the general version. We can combine observations from
subtask 3 and subtask 4 to get the general solution. First, we see that one lone isolated vertex
is still irrelevant, but we have to special-case it. Then, we can do the distinction between
components without landmark, with landmarks and connection points, and with landmark but
valid. For components with landmark, we can find out the connection points as in subtask 4.
For components without landmark, we consider all possibilities of adding one connection point.
Then, we continue as if it were a landmark and find the set of connection point this generates.
Over all these possibilities, we take the minimal one. This takes 𝒪(𝑛2) time, but this passes as
𝑛 ≤ 10000. Then, we must be careful how we connect these components. The general plan is
to

1. connect empty-component connection points with each other

2. connect empty-component connection points to connection points of components with a
landmark

3. connect empty-component connection points to valid components

4. carry on as in subtask 4

In the first three steps, we must be extremely careful in dealing with paths and lone vertices
(which are a special case of paths). Considering them as having two connection points for the
first two steps solves the problem. Each step 1. and 2. decreases the number of connection points
by two, which is optimal. Further, we never create valid components as each empty component
has at least two connection points, so we don’t need to do the sorting first. Again, if at any point
we run into problems, we output Impossible.

1 #include <bits/stdc++.h>
2

3 using namespace std;
4

5 struct Component {
6 vector<int> connection_points;
7

8 int landmark;
9 bool path;

10 };

34/43

Qualification Round, 2024/2025
Task hikingsigns

11

12 bool dfs(int n, vector<vector<int>> &g, vector<bool> &is_landmark, vector<bool> &vis,
13 Component &comp) {
14 vis[n] = true;
15 int num_marked = 0, num_unmarked = 0;
16 for (auto w: g[n]) {
17 if (vis[w]) continue;
18 bool is_marked = dfs(w, g, is_landmark, vis, comp);
19 if (is_marked) {
20 num_marked += 1;
21 } else if (num_unmarked == 1) {
22 // we already have an unmarked subtree, this one must have a sign
23 comp.connection_points.push_back(w);
24 num_marked += 1;
25 } else {
26 num_unmarked += 1;
27 }
28 }
29 return num_marked > 0 || is_landmark[n];
30 }
31

32 void componentDfs(int n, vector<vector<int>> &g, vector<bool> &vis, vector<int> &vertices) {
33 // find all vertices in a component
34 vertices.push_back(n);
35 vis[n] = true;
36 for (auto w: g[n]) {
37 if (vis[w]) continue;
38 componentDfs(w, g, vis, vertices);
39 }
40 }
41

42 int main() {
43 int t;
44 cin >> t;
45

46 for (int c = 0; c < t; ++c) {
47 int n, m, k;
48 cin >> n >> m >> k;
49

50 vector<bool> is_landmark(n, false);
51 for (int i = 0; i < k; ++i) {
52 int l;
53 cin >> l;
54 is_landmark[l] = true;
55 }
56 vector<vector<int>> g(n);
57 for (int i = 0; i < m; ++i) {
58 int a, b;
59 cin >> a >> b;
60 g[a].push_back(b);
61 g[b].push_back(a);
62 }
63 cout << "Case #" << c << ": ";
64 vector<bool> vis(n, false);
65 vector<Component> valid_components;
66 vector<Component> invalid_components;
67 vector<Component> empty_components;
68 bool has_isolated_vertex = false;
69 for (int i = 0; i < n; ++i) {
70 if (!vis[i]) {
71 vector<int> componentVertices;
72 componentDfs(i, g, vis, componentVertices);
73 Component comp{{}, -1, true};
74 for (auto e: componentVertices) {
75 if (is_landmark[e]) comp.landmark = e;
76 if (g[e].size() > 2) comp.path = false;
77 }
78 if (comp.landmark == -1) {

35/43

Qualification Round, 2024/2025
Task hikingsigns

79 // empty component
80 if (componentVertices.size() == 1 && !has_isolated_vertex) {
81 // special case one lone vertex
82 has_isolated_vertex = true;
83 continue;
84 }
85 // find best set of connection points
86 for (auto e: componentVertices) {
87 Component tempComp{{e}};
88 for (auto f: componentVertices) vis[f] = false;
89 dfs(e, g, is_landmark, vis, tempComp);
90 if (comp.connection_points.empty() ||
91 tempComp.connection_points.size() < comp.connection_points.size()) {
92 comp.connection_points = tempComp.connection_points;
93 }
94 }
95 if (comp.path) {
96 // for paths, add both endpoints
97 comp.connection_points.clear();
98 for (auto e: componentVertices) {
99 if (g[e].size() == 1) comp.connection_points.push_back(e);

100 if (g[e].empty()) {
101 comp.connection_points.push_back(e);
102 comp.connection_points.push_back(e);
103 }
104 }
105 }
106 empty_components.push_back(comp);
107 } else {
108 for (auto f: componentVertices) vis[f] = false;
109 dfs(comp.landmark, g, is_landmark, vis, comp);
110 if (comp.connection_points.empty()) valid_components.push_back(comp);
111 else invalid_components.push_back(comp);
112 }
113 }
114 }
115 vector<pair<int, int>> extra_edges;
116 std::sort(invalid_components.begin(), invalid_components.end(),
117 [](Component &l, Component &r)
118 { return l.connection_points.size() < r.connection_points.size(); });
119 while (empty_components.size() > 1) {
120 // fist step, merge empty components
121 Component a = empty_components.back();
122 empty_components.pop_back();
123 Component b = empty_components.back();
124 empty_components.pop_back();
125 extra_edges.push_back({a.connection_points.back(), b.connection_points.back()});
126 a.connection_points.pop_back();
127 b.connection_points.pop_back();
128 a.connection_points.insert(a.connection_points.end(), b.connection_points.begin(),
129 b.connection_points.end());
130 empty_components.push_back(a);
131 }
132 if (!empty_components.empty()) {
133 // second and third step, merge empty component to non-empty component
134 Component a = empty_components.back();
135 empty_components.pop_back();
136 if (!invalid_components.empty()) {
137 Component b = invalid_components.back();
138 invalid_components.pop_back();
139 extra_edges.push_back({a.connection_points.back(), b.connection_points.back()});
140 a.landmark = b.landmark;
141 } else if (!valid_components.empty()) {
142 Component b = valid_components.back();
143 valid_components.pop_back();
144 vector<bool> vis2(n, false);
145 vector<int> vertices;
146 componentDfs(b.landmark, g, vis2, vertices);

36/43

Qualification Round, 2024/2025
Task hikingsigns

147 vector<int> endpoints;
148 for (auto e: vertices) {
149 if (g[e].size() <= 1) endpoints.push_back(e);
150 }
151 // preferably connect to a leaf without landmark
152 if (endpoints.size() >= 2 && is_landmark[endpoints[0]]) b.landmark = endpoints[1];
153 else b.landmark = endpoints[0];
154 extra_edges.push_back({a.connection_points.back(), b.landmark});
155 a.landmark = b.landmark;
156 } else {
157 empty_components.push_back(a);
158 }
159 // recompute connection points (because of paths)
160 for (auto [s, e]: extra_edges) {
161 g[s].push_back(e);
162 g[e].push_back(s);
163 }
164 if (a.landmark != -1) {
165 a.connection_points.clear();
166 vector<bool> vis2(n, false);
167 dfs(a.landmark, g, is_landmark, vis2, a);
168 }
169 if (a.connection_points.empty()) valid_components.push_back(a);
170 else invalid_components.push_back(a);
171 }
172 // continue as in subtask 4
173 while (!invalid_components.empty()) {
174 if (invalid_components.size() == 1 && valid_components.empty()) break;
175 if (invalid_components.size() >= 2) {
176 Component a = invalid_components.back();
177 invalid_components.pop_back();
178 Component b = invalid_components.back();
179 invalid_components.pop_back();
180 extra_edges.push_back({a.connection_points.back(), b.connection_points.back()});
181 a.connection_points.pop_back();
182 b.connection_points.pop_back();
183 a.connection_points.insert(a.connection_points.end(), b.connection_points.begin(),
184 b.connection_points.end());
185 if (a.connection_points.empty()) valid_components.push_back(a);
186 else invalid_components.push_back(a);
187 } else if (invalid_components.size() == 1) {
188 Component a = invalid_components.back();
189 invalid_components.pop_back();
190 Component b = valid_components.back();
191 valid_components.pop_back();
192 extra_edges.push_back({a.connection_points.back(), b.landmark});
193 a.connection_points.pop_back();
194 if (a.connection_points.empty()) valid_components.push_back(a);
195 else invalid_components.push_back(a);
196 }
197 }
198 if (invalid_components.empty() && empty_components.empty()) {
199 cout << extra_edges.size() << '\n';
200 for (auto [a, b]: extra_edges)
201 cout << a << ' ' << b << '\n';
202 } else {
203 cout << "Impossible\n";
204 }
205 }
206 }

This code again in 𝒪(𝑛2) and uses 𝒪(𝑛) memory. It is also quite slow (∼1 min), but this is enough
to pass the subtask. There exist 𝒪(𝑛) solutions again using the smaller to larger technique for
merging1 and the rerooting technique for the optimal connection points in components without
landmarks.

1Not 𝒪(𝑛 log 𝑛) because we merge almost everything into the largest component

37/43

Qualification Round, 2024/2025
Task circuit

Circuit
Task Idea Johannes Kapfhammer, Mikhail Pyaderkin
Task Preparation Mikhail Pyaderkin
Description English Mikhail Pyaderkin
Description German Charlotte Knierim
Description French Cheng Zhong
Solution Mikhail Pyaderkin

The tutorial below describes basic ideas how to approach the task. To get a higher score, you
need to experiment with various approaches and optimizations on top of the basic idea and
check which yield better results. It is not guaranteed that there exists a solution that can score
100 points.

Subtask 1: 20 points
Since 𝑛 = 1 and all integers are positive, it essentially means that the best cross that we can get
is just to take everything. Now our task is to design a circuit that computes the sum of input
elements. Generally, if a task requires you to use a custom language (in this task you need to
express your solution as a circuit), it is a good idea to first solve it using a standard language. In
case you need to sum up the integers, the most basic approach is to do it with a for loop:
1 sum = 0;
2 for (i = 0; i < n; i++) {
3 sum = sum + in[0][i];
4 }
5 out = sum;

Let’s now turn this into a circuit. We can not reuse the variable summultiple times, since every
variable might appear on the left side at most once. Instead, we need to create a new variable
every time. Let’s illustrate what needs to be done for 𝑛 = 4. A program in a standard language
would look like this:

1 sum = 0;
2 sum = sum + in[0][0];
3 sum = sum + in[0][1];
4 sum = sum + in[0][2];
5 sum = sum + in[0][3];
6 out = sum;

The corresponding circuit looks very similar:
1 sum_0 = 0
2 sum_1 = sum_0 + in[0][0]
3 sum_2 = sum_1 + in[0][1]
4 sum_3 = sum_2 + in[0][2]
5 sum_4 = sum_3 + in[0][3]
6 out = sum_4

For a given 𝑛, the resulting circuit contains 𝑛 nodes, and the longest path between an input
node and the output node is also 𝑛, since every node depends on the previous one. Luckily we
don’t have to sum the integers in order: we can instead design a circuit with a lower depth by
rearranging the items. Indeed, to sum up 4 integers we can instead compute the sum of the first
two, the sum of the last two, and then the result:
1 sum_01 = in[0][0] + in[0][1]
2 sum_23 = in[0][2] + in[0][3]
3 out = sum_01 + sum_23

To generalize this approach to higher 𝑛, we can use recursion: to compute the sum of 𝑛 elements,
split them into 2 halves, compute the sum of the first half, of the second half, and the result. This

38/43

Qualification Round, 2024/2025
Task circuit

corresponds to building a binary tree with the input elements as leaves. The corresponding
circuit also has 𝑛 nodes, but its depth is not greater than log2 𝑛 + 1.

Subtask 2: 20 points
The solution to the second subtask is not simpler than the one that can also solve the third one,
so please see the solution for the third subtask.

Subtask 3: 20 points
In the second and third subtasks it might no longer be optimal to take everything, since there
might be negative numbers, which means that computing the sum is not enough. Luckily, we
can compute a bit more information to still be able to solve the task. Let’s design a recursive
function that for a given range of elements [𝑙 , 𝑟) computes the following values:

1. sum𝑙 ,𝑟 — the sum of all elements in this range,

2. pref𝑙 ,𝑟 — the maximum sum among all prefixes of this range,

3. suf𝑙 ,𝑟 — the maximum sum among all suffixes of this range,

4. ans𝑙 ,𝑟 — the maximum sum among all subranges of this range.

If we compute all those values, than the answer to the problem is just ans0,𝑛 . We are going to
compute all these values for a given range [𝑙 , 𝑟) the same way we computed the sum: recursively.
If the range [𝑙 , 𝑟) contains a single element, it means its value defines all 4 quantities sum, pref,
suf and ans. Otherwise, let 𝑚 be 𝑙+𝑟

2 . Let’s compute these values for the range [𝑙 , 𝑚) and for the
range [𝑚, 𝑟). Then, we can compute the desired values as follows:

1. For sum𝑙 ,𝑟 it’s trivial: we just need to sum up the already computed values sum𝑙 ,𝑚 + sum𝑚,𝑟 .
2. For pref𝑙 ,𝑟 it’s a bit more involved. Among all prefixes of the range [𝑙 , 𝑟), there are two

groups:

• the ones that are also the prefixes of [𝑙 , 𝑚),
• the ones that contain [𝑙 , 𝑚) as a whole, and additionally a prefix of the range [𝑚, 𝑟).

To pick the maximum prefix among the first group, we just need to look at pref𝑙 ,𝑚 . To
pick the maximum prefix among the second group note that, they all contain the whole
range [𝑙 , 𝑚), so the only difference between them is what we pick as a prefix of [𝑚, 𝑟)
and luckily we already know the best one there — it’s pref𝑚,𝑟 . The final formula is
pref𝑙 ,𝑟 = max(pref𝑙 ,𝑚 , sum𝑙 ,𝑚 + pref𝑚,𝑟),

3. Following similar logic, suf𝑙 ,𝑟 = max(suf𝑙 ,𝑚 + sum𝑚,𝑟 , suf𝑚,𝑟).
4. The most interesting fact is how to compute ans𝑙 ,𝑟 . Among all the subsegments of [𝑙 , 𝑟)

there are three groups:

• the ones that are also subsegments of [𝑙 , 𝑚),
• the ones that are also subsegments of [𝑚, 𝑟),
• the ones that do not belong to the first two groups.

To pick the maximum subsegment among the first group, it’s enough to look at ans𝑙 ,𝑚 .
Similarly for the second group we already know the answer — it is ans𝑚,𝑟 . Note that
for the third group, every subsegment that is not contained as a whole in either of
the halves intersects the middle point 𝑚, meaning it consists of a suffix of the range
[𝑙 , 𝑚) and a prefix of the range [𝑚, 𝑟). Since we already know the maximum suffix and
the maximum prefix of the corresponding ranges, we can easily compute the answer:
ans𝑙 ,𝑟 = max(ans𝑙 ,𝑚 , ans𝑚,𝑟 , suf𝑙 ,𝑚 + pref𝑚,𝑟).

39/43

Qualification Round, 2024/2025
Task circuit

This recursive approach is very similar to the first subtask, and the resulting circuit also has 𝒪(𝑛)
nodes and 𝒪(log2 𝑛) depth.

Subtask 4: 20 points
If all integers on the grid are non-negative, then it must consists of an entire row and an entire
column, because any other cross can be extended without decreasing the sum. To compute
the sum in each row we can use the same recursive algorithm as we used in the first subtasks,
let row𝑟 be the sum of the elements in the row 𝑟. Similarly we can compute col𝑐 — the sum
for every column. Given a cell (𝑟, 𝑐), the optimal cross having (𝑟, 𝑐) as the center cell has the
sum best𝑟,𝑐 = row𝑟 + col𝑐 − in𝑟,𝑐 . Now we have 𝑛 · 𝑚 integers best𝑟,𝑐 and we need to find the
maximum among them. The easiest way is again to use recursion: similarly to the sum, we
can compute the maximum among 𝑘 elements using a circuit of size 𝒪(𝑘) with depth 𝒪(log2 𝑘).
Given we have 𝒪(𝑛 · 𝑚) elements stored in best, we need a circuit of size 𝒪(𝑛 · 𝑚) with depth
log2 (𝑛 · 𝑚). Given that we also need to compute the sum in each row and in each column, we
end up with a circuit of size 𝒪(𝑛 · 𝑚) with depth 𝒪(log2 𝑛 + log2 𝑚).

Subtask 5: 20 points
Following the solution for the previous subtask one can notice that for a given cell (𝑟, 𝑐) we just
need to find the optimal horizontal segment containing this cell, find the optimal vertical segment
containing this cell, and sum them up to compute best𝑟,𝑐 . Then we can use the same approach
as before to compute the maximum among all values efficiently. The vertical and horizontal
segments can be found independently, so we reduced the task to the following: given an array
(that represents either a column or a row), for each index 𝑖 compute the subsegment with the
maximum sum that contains the element at index 𝑖.

There are multiple approaches to achieve that, and while the one described below does not give
you the smallest depth and as such not the highest number of points, its depth is still asymptotically
𝒪(log2 𝑛 + log2 𝑚), and its size is 𝒪(𝑛 · 𝑚), and has a very short implementation.

Note that any segment containing an index 𝑖 contains of a suffix of the range [0, 𝑖), an element 𝑖
and a prefix of the range [𝑖 , 𝑛). Since computing the optimal suffix is the same as computing the
optimal prefix but for a reversed array, it is enough to know how to compute the optimal prefix
for each 𝑖 and reuse the code.

To compute the optimal prefix for each 𝑖 we can use the same idea as for the subtasks 2 and 3.
Essentially with the recursive approach we build a segment tree, where for each node we store
the sum, the maximum prefix, the maximum suffix and the maximum subsegment. Such nodes
can be easily merged, the same way we recursively compute them, so indeed we can build a
segment tree. Then for every prefix we can just query the segment tree.

This approach is a bit wasteful, since if we need to compute the answer for all prefixes, we
combine the same segment tree nodes into the answer multiple times. Let’s iterate over all the
prefixes from left to right and to compute the answer for the prefix ending with position 𝑖, we
need to know the longest segment tree node that ends in position 𝑖 (that corresponds to the last
node that will used in a normal segment tree node), let this node correspond to the range [𝑙 , 𝑖).
Since we already computed the answer for prefix ending at position 𝑙, we can easily combine it
with the sum on the range [𝑙 , 𝑖) to compute the answer for our prefix ending at position 𝑖.

Additional optimizations can include a smarter way of reusing information between prefixes
and suffixes, or by simply caching the results: if for some reason we need to create a node that
computes the sum or maximum of two values, let’s first check if there isn’t already a node that
does exactly that.

40/43

Qualification Round, 2024/2025
Task cakeicing

Cake icing
Task Idea Linus Lüchinger, Johannes Kapfhammer
Task Preparation Linus Lüchinger, Benjamin Schmid
Description English Linus Lüchinger, Hannah Oss
Description German Hannah Oss, Linus Lüchinger
Solution Linus Lüchinger

By the nature of creativity tasks, a big variety of solutions can work well on this task. In order to
limit the scope of this analysis, we will focus on strategies which define some scoring function
to rate pours and then search for pours maximizing that scoring function. Note that many
strategies, even if not originally intended this way, can be formalized like this. For example,
a greedy strategy which simply takes the largest piece on every move can be viewed as the
described strategy with the score of a pour being the importance of the most important covered
piece.

These strategies must perform two main steps:

• Define a scoring function 𝑆(𝐶, 𝑃) which given the state of a cake 𝐶 and a pour 𝑃, gives a
score of how good playing that pour on the cake is.

• Find a way to come up with pours that give high scores given a specific cake.

Scoring function
A good scoring function needs to consider at least the following facts:

1. It is better to ice pieces with higher importance.

2. It is better to ice pieces iced by the opponent rather than un-iced ones.

3. It is useless to ice pieces which are currently iced by ourselves.

4. A piece should not receive too little icing as the opponent would likely ice that piece again,
yielding our pour useless.

5. A piece should not receive too much icing as that leaves less icing to claim other pieces.

6. Pieces should be iced as early as possible in order to not give a chance to the opponent to
ice them, which would make it more expensive to re-ice them.

One can notice that the exact combination of pieces involved in a pour isn’t of great importance.
Rather, we can say that the score of a pour is the sum of scores of the pieces iced in the pour.
For each piece we can give a score of how good it is to claim the piece with a given thickness.
We denote this scoring function for pieces as 𝑠𝐶(𝑝, 𝑡) where 𝐶 is the state of the cake, 𝑝 is the
piece and 𝑡 is the thickness with which the piece is to be iced. The score of a pour 𝑃 can then be
calculated as 𝑆(𝐶, 𝑃) = ∑

𝑝∈𝑃.pieces 𝑠𝐶(𝑝, 𝑃.thickness) where we denote the set of pieces in a pour
as 𝑃.pieces and the thickness of a pour as 𝑃.thickness. This is a restriction in how the scoring
function is allowed to work and thus does not allow for some scoring functions which one might
want. However, we argue that good scoring functions can quite well be approximated with such
a sum scoring function (as well as a penalty for using much icing which will be discussed later).
The reason we want such as sum scoring function is that it greatly simplifies pour search.

We can implement the requirements 1 − 3 in our piece-scoring function 𝑠𝐶 as follows: We
define a value 𝑣 for each piece: 0 if the piece is currently iced by us, importance if it is uniced
and 2 · importance if it is iced by the opponent. The factor of 2 arises because icing that piece
adds importance to our score and subtracts importance from the opponent’s score, resulting
in an effective gain of 2 · importance. We then make 𝑠𝐶(𝑝, 𝑡) proportional to the pieces 𝑣. For

41/43

Qualification Round, 2024/2025
Task cakeicing

requirement 4, we calculate an ideal icing amount for each piece (for example by distributing the
remaining icing on all pieces according to their value) and let the score be very small (or 0) if
the icing spent on a piece is significantly below the ideal icing amount. The exact method for
calculating this should be determined through bot-specific testing, as theoretical considerations
alone are insufficient. For requirement 5, we can either also add a penalty in case the icing
spent on a piece is significantly above the ideal amount of icing or rely on the fact that if a pour
significantly overinvests on many pieces, there will be another pour which has a better score as
overinvesting does not result in additional score. An example of a piecewise scoring function
following the discussed concepts is:

𝑠𝐶(𝑝, 𝑡) =

𝑝.𝑣 if 3𝑡−1 > 𝑝.importance · ipi
𝑝.𝑣 · 𝑝.importance · ipi − 3𝑡−1

3𝑡 − 3𝑡−1 if 3𝑡−1 < 𝑝.importance · ipi < 3𝑡

0 otherwise

where ipi (icing per importance) is the remaining icing of our bot plus the remaining icing of the
opponent divided by the sum of importances of pieces which are not claimed with a sufficient
thickness (so basically the icing that should roughly be spent per importance), 𝑝.𝑣 is the pieces
value as defined above and 𝑝.importance is the pieces’ importance.

Note that with this kind of scoring function, the optimal pour would likely be one spending
nearly the entire remaining icing. To prevent this, one can either limit the amount of icing on a
specific turn or calculate an adjusted score of a pour based on the sum score and the amount
of icing used in the pour (by dividing the sum score by the amount of icing used to the power
of some constant between 0 and 1 or something similar). Both of these options are efficiently
implementable with the move search we will discuss. Note that in the first case, one needs
to decide how much icing should be available in each turn. This is where we can implement
requirement 6 by making more icing available for early turns.

Pour search
As discussed, we only consider score functions where the score of a pour is the sum of the scores
of the pieces in the pour. Thus, pour search consists of finding a sequence of pieces where
consecutive pieces are adjacent such that the sum of scores of the pieces is maximized. Note that
as the score for a piece depends on the thickness of the pour, this process needs to be repeated
for multiple thicknesses. Since the amount of possible thicknesses is logarithmic in the icing
amount this is acceptable.

There are many standard optimization techniques that work for this problem such as greedy,
evolutionary algorithms, ant colony optimization, simulated annealing. . . One can also use many
different heuristics such as using a sequence of moves from high scoring pieces to other high
scoring pieces while maximizing the sum of scores on the path between the two. In this analysis,
a dynamic programming approach will be discussed in more detail:

The core idea is to restrict the problem such that it can easily be solved with dynamic programming:
What is the best pour if one is only allowed to move down, to the left and to the right. This
can be solved with the following dp: 𝑙[𝑘][𝑥][𝑦] = maximum score of a pour of length 𝑘 starting
from the piece (x,y) while only going to the left on the 𝑦th row and 𝑟[𝑘][𝑥][𝑦] = the same but
only going to the right on the 𝑦th row. The observation to be made is that on each row, one
can go either only to the right or only to the left but never both. Thus, when going down to a
new row, one can choose whether to go to the left or to the right on that row but after that, one
can only either follow the chosen direction or go down one row and choose a direction again.
Thus 𝑙[𝑘][𝑥][𝑦] = score[𝑥][𝑦] + max(𝑙[𝑘 − 1][𝑥 − 1][𝑦],max(𝑙[𝑘 − 1][𝑥][𝑦 − 1], 𝑟[𝑘 − 1][𝑥][𝑦 − 1]))
and 𝑟[𝑘][𝑥][𝑦] = score[𝑥][𝑦] + max(𝑟[𝑘 − 1][𝑥 + 1][𝑦],max(𝑙[𝑘 − 1][𝑥][𝑦 − 1], 𝑟[𝑘 − 1][𝑥][𝑦 − 1])).
The score of the best pour under the additional constraints will then be in some 𝑟[𝑘][𝑥][𝑦] or
𝑙[𝑘][𝑥][𝑦]. In order to also be able to reconstruct the pour resulting in that score, one can save

42/43

Qualification Round, 2024/2025
Task cakeicing

the first move direction in the optimal pour along with its score in the dp table. To get the
second move direction, one can look at 𝑟/𝑙[𝑘 − 1][𝑥𝑛][𝑦𝑛] where 𝑥𝑛 and 𝑦𝑛 are the coordinates
of the piece reached after executing that first move. The rest of the pour can be reconstructed
analogously. Searching for pours under these constraints in most cases still results in decent
pours (i.e there is often a good pour which does not require moving up from a piece).

However, since the maps are small in this task, the bot usually has time for additional calculations.
This can be taken advantage of by considering multiple different constrained version which can
all be solved with a similar dp and then taking the best pour found under any constraints. To get
alternative constraints which can still be solved with a similar dp solution, we generalize the
constraint of not being able to move up: Instead of dividing the cake into rows and only allowing
to move from a higher row to a lower one, we divide the cake into trees and assign each tree a
‘height‘. An example of how to divide the cake into trees can be found in Figure 1. From a piece,
one is then only allowed to move along a tree edge or to a neighboring tree with a lower height.
Under these constraints, one only has to pay attention to not go back to the piece that one came
from, just as before, we needed to pay attention to not go left immediately after going right or
vice versa. If this is obeyed, it is impossible to visit a piece twice in a pour and thus impossible to
double count it in the dp. Our dp state then again consists of the 𝑥 and 𝑦 of the starting piece
and the length of the pour 𝑘, but now additionally also stores the direction 𝑑 in which we are not
allowed to move in as our first move (instead of having two separate dps each with a direction
which is not allowed as the first move as before). As before, we can calculate dp[𝑘][𝑥][𝑦][𝑑] from
dp[𝑘 − 1] by going through all the neighbors we are allowed to move to (remember that we also
have the tree edge and tree “height” constraints) and which are not in the direction 𝑑 and taking
the maximum of dp[𝑘 − 1][𝑥neighbour][𝑦neighbour][𝑑from neighbour to current piece]. Reconstructing the
pour works the same as before.

Figure 1: An example of how to divide the cake into trees.

The division of the cake into trees should happen in a randomized manner and be repeated
multiple times, as long as the bot still has time. The trees should not be too small (as the “height”
constraint is too constraining in that case) as well as not too large (as the tree edge constraint
is too constraining in that case). The optimal size for each tree is probably around min(𝑊, 𝐻).
The height assignment to the trees should not happen completely randomly as that would mean
there are lots of “sinks” (trees with no lower neighboring tree) and “sources” (trees with no
higher neighboring tree). Sinks are undesirable as pours starting in that tree do not have an
option to leave the tree and consequently not much freedom and thus probably no very good
option. Sources are undesirable as there is a lot of freedom for pours starting in that tree, more
than probably neccesary and it would be better to give some freedom to a neighboring tree by
making it higher than the source. One way to achieve a good height assignment is to run bfs (on
the graph of trees, where neighboring trees have an edge) from a tree on the edge of the cake and
assign heights according to the order in which all trees are visited.

43/43

	Cheese Machine
	A small test (10 points)
	Small test, no problems (13 points)
	Imprecise machine (17 points)
	Finally a perfect machine (26 points)
	The machine needs fixing (34 points)

	Rotation
	No modifications (10 Points)
	Small Wheel (16 Points)
	No rotations (11 Points)
	No swaps (27 Points)
	Escape (36 Points)

	Landscaping
	Finding pyramids (13 points)
	Explosive operations (19 points)
	Only chiseling (17 points)
	Both operations (22 points)
	Larger terrain (29 points)

	Trampoline
	From the beginning (8 points)
	From the optimal trampoline (14 points)
	More trampolines (29 points)
	Adjusting one trampoline (14 points)
	No limits (35 points)

	Train
	Mini Railway Line (23 points)
	Fixed Length Trains (15 points)
	Medium Railway Line (20 points)
	Direct Trains (16 points)
	Long Railway Line (26 points)

	Hiking Signs
	13 Points
	15 Points
	16 Points
	27 Points
	29 Points

	Circuit
	20 points
	20 points
	20 points
	20 points
	20 points

	Cake icing
	Scoring function
	Pour search

