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All-pairs shortest path

Weighted graph V, E with |V| = N
Weights correspond to lengths ≥ 0.
What is the shortest path from u to v? (for all u, v ∈ V)
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All-pairs shortest path

Adjacency Matrix
G[i][j] : length of edge from i to j.
G[i][j] =∞ : no edge from i to j.
G[i][i] = 0

The edge weights should be non-negative, since cycles of
negative length are problematic.
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All-pairs shortest path – example
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Important properties of shortest paths

A shortest path doesn’t contain cycles.

Every subpath of a shortest path is also a shortest path.
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First DP approach

DP[i][j] : length of a shortest path from i to j.

Optimal substructure
If k is located on the shortest path:

DP[i][j] = DP[i][k] + DP[k][i]

Computation?

DP[i][j] = min

(
G[i][j],min

k∈V
(DP[i][k] + DP[k][j])

)
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First DP approach – di�culties

Computation?

DP[i][j] = min

(
G[i][j],min

k∈V
(DP[i][k] + DP[k][j])

)

Cyclic dependencies
DP[1][2]⇐ DP[1][3]⇐ DP[1][2]⇐ . . .

DP state is too small!
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Repaired DP approach

DP[l][i][j] : length of a shortest path from i to j using at most l
edges.

Optimal substructure
The first l− 1 edges of a shortest path are also a shortest path.

DP[l][i][j] = min
k∈V

(DP[l− 1][i][k] + G[k][j])

DP[1][i][j] = G[i][j]

⇒ no more cyclic dependencies.
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Repaired DP approach – analysis

DP[l][i][j] : length of a shortest path from i to j using at most l
edges.

DP[l][i][j] = min
k∈V

(DP[l− 1][i][k] + G[k][j])

Θ(N3) states, each requiring Θ(N) time.
Θ(N4) running time and Θ(N3) memory.
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Repaired DP approach – top-down

1 vector<vector<vector<int>>> cache(n,
vector<vector<int>>(n, vector<int>(n, -1)));↪→

2 const int INF = 1e9;
3 int dp(int l, int i, int j) {
4 if (l == 0) return G[i][j];
5 int &c = cache[l][i][j];
6 if (c != -1) return c;
7 c = INF;
8 for (int k = 0; k < n; ++k) {
9 c = min(c, dp(l-1, i, k) + G[k][j]);

10 }
11 return c;
12 } 10



Improved DP approach

DP[k][i][j] : length of a shortest path from i to j through
vertices with index < k.

Optimal substructure
The shortest path either goes through vertex k, or it avoids k.

DP[k+ 1][i][j] = min (DP[k][i][k] + DP[k][k][j],DP[k][i][j])
DP[0][i][j] = G[i][j]
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Improved DP approach – bottom up

1 vector<vector<vector<int>>> DP(n,
vector<vector<int>>(n, vector<int>(n, INF)));↪→

2 for (int i=0;i<n;++i)
3 for (int j=0;j<n;++j)
4 DP[0][i][j] = G[i][j];
5 for (int k = 0; k < n; ++k)
6 for (int i = 0; i < n; ++i)
7 for (int j = 0; j < n; ++j)
8 DP[k+1][i][j] = min(DP[k][i][k] + DP[k][k][j],
9 DP[k][i][j]);

Θ(N3) states, each requiring Θ(1) time.
Θ(N3) running time and memory. 13



Improved DP approach – less memory

1 vector<vector<int>> DP = G;
2 for (int k = 0; k < n; ++k) // k is outermost
3 for (int i = 0; i < n; ++i)
4 for (int j = 0; j < n; ++j)
5 DP[i][j] = min(DP[i][k] + DP[k][j], DP[i][j]);

Θ(N3) running time, Θ(N2) memory.

14



Applications

Everything that needs shortest paths

• Diameter of a graph.
• Possibly some task of the first round

The algorithm also works on weighted graphs with negative
weights.
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