DP 3: All-pairs Shortest Paths

Johannes Kapfhammer
11 November 2019

All-pairs shortest path

Weighted graph V, E with $|V|=N$
Weights correspond to lengths ≥ 0.
What is the shortest path from u to v ? (for all $u, v \in V$)

All-pairs shortest path

Adjacency Matrix
$G[i][j]$: length of edge from i to j.
$G[i][j]=\infty$: no edge from i to j.
$G[i][i]=0$
The edge weights should be non-negative, since cycles of negative length are problematic.

All-pairs shortest path - example

Important properties of shortest paths

A shortest path doesn't contain cycles.

Important properties of shortest paths

A shortest path doesn't contain cycles.
Every subpath of a shortest path is also a shortest path.

First DP approach

$\mathrm{DP}[i][j]$: length of a shortest path from i to j.

Optimal substructure

If k is located on the shortest path:

$$
\mathrm{DP}[i][j]=\mathrm{DP}[i][k]+\mathrm{DP}[k][i]
$$

First DP approach

DP $[i][j]$: length of a shortest path from i to j.

Optimal substructure

If k is located on the shortest path:

$$
\mathrm{DP}[i][j]=\mathrm{DP}[i][k]+\mathrm{DP}[k][i]
$$

Computation?

$$
\mathrm{DP}[i][j]=\min \left(G[i][j], \min _{k \in V}(\mathrm{DP}[i][k]+\mathrm{DP}[k][j])\right)
$$

First DP approach - difficulties

Computation?

$$
\mathrm{DP}[i][j]=\min \left(G[i][j], \min _{k \in V}(\mathrm{DP}[i][k]+\mathrm{DP}[k][j])\right)
$$

First DP approach - difficulties

Computation?

$$
\mathrm{DP}[i][j]=\min \left(G[i][j], \min _{k \in V}(\mathrm{DP}[i][k]+\mathrm{DP}[k][j])\right)
$$

Cyclic dependencies

$$
\mathrm{DP}[1][2] \Leftarrow \mathrm{DP}[1][3] \Leftarrow \mathrm{DP}[1][2] \Leftarrow \ldots
$$

DP state is too small!

Repaired DP approach

DP[l][i][j] : length of a shortest path from i to j using at most l edges.

Repaired DP approach

DP[l][i][j] : length of a shortest path from i to j using at most l edges.

Optimal substructure
The first $l-1$ edges of a shortest path are also a shortest path.

$$
\begin{aligned}
\mathrm{DP}[l][i][j] & =\min _{k \in V}(\mathrm{DP}[l-1][i][k]+G[k][j]) \\
\mathrm{DP}[1][i][j] & =G[i][j]
\end{aligned}
$$

\Rightarrow no more cyclic dependencies.

Repaired DP approach - analysis

$\mathrm{DP}[l][i][j]$: length of a shortest path from i to j using at most l edges.

$$
\mathrm{DP}[l][i][j]=\min _{k \in V}(\mathrm{DP}[l-1][i][k]+G[k][j])
$$

Repaired DP approach - analysis

$\mathrm{DP}[l][i][j]$: length of a shortest path from i to j using at most l edges.

$$
\mathrm{DP}[l][i][j]=\min _{k \in V}(\mathrm{DP}[l-1][i][k]+G[k][j])
$$

$\Theta\left(N^{3}\right)$ states, each requiring $\Theta(N)$ time. $\Theta\left(N^{4}\right)$ running time and $\Theta\left(N^{3}\right)$ memory.

Repaired DP approach - top-down

vector<vector<vector<int>>> cache(n,
$\hookrightarrow \operatorname{vector<vector<int\gg (n,~vector<int>(n,~-1)));~}$
const int INF = 1e9;
int $d p(i n t l$, int i, int $j)\{$
if (l == 0) return G[i][j];
int \&c = cache[l] [i] [j];
if (c ! = -1) return c;
c = INF;
for (int $k=0 ; k<n ;++k)\{$
$c=\min (c, \operatorname{dp}(l-1, i, k)+G[k][j])$;
\}
return c;
\}

Improved DP approach

$\mathrm{DP}[k][i][j]$: length of a shortest path from i to j through vertices with index $<k$.

Improved DP approach

$\mathrm{DP}[k][i][j]$: length of a shortest path from i to j through vertices with index $<k$.

Optimal substructure

The shortest path either goes through vertex k, or it avoids k.

$$
\begin{aligned}
\mathrm{DP}[k+1][i][j] & =\min (\mathrm{DP}[k][i][k]+\mathrm{DP}[k][k][j], \mathrm{DP}[k][i][j]) \\
\mathrm{DP}[\mathrm{o}][i][j] & =G[i][j]
\end{aligned}
$$

Improved DP approach - top-down

```
vector<vector<vector<int>>> cache(n,
| vector<vector<int>>(n, vector<int>(n, -1)));
int dp(int k, int i, int j) {
    if (k == 0) return G[k][i][j];
    if (cache[k][i][j] != -1) return cache[k][i][j];
    cache[k][i][j] = min(
        dp(k-1, i, k-1) + dp(k-1, k-1, j),
        dp(k-1, i, j)
    );
    return cache[k][i][j];
}
```


Improved DP approach - top-down

```
vector<vector<vector<int>>> cache(n,
| vector<vector<int>>(n, vector<int>(n, -1)));
int dp(int k, int i, int j) {
    if (k == 0) return G[k][i][j];
    if (cache[k][i][j] != -1) return cache[k][i][j];
    cache[k][i][j] = min(
        dp(k-1, i, k-1) + dp(k-1, k-1, j),
        dp(k-1, i, j)
    );
    return cache[k][i][j];
}
```

$\Theta\left(N^{3}\right)$ states, each requiring $\Theta(1)$ time.
$\Theta\left(N^{3}\right)$ running time and memorv.

Improved DP approach - bottom up

```
vector<vector<vector<int>>> DP(n,
    | vector<vector<int>>(n, vector<int>(n, INF)));
for (int i=0;i<n;++i)
    for (int j=0;j<n;++j)
        DP[0][i][j] = G[i][j];
for (int k = 0; k < n; ++k)
    for (int i = 0; i < n; ++i)
    for (int j = 0; j < n; ++j)
    DP[k+1][i][j] = min(DP[k][i][k] + DP[k][k][j],
                                DP[k][i][j]);
```

$\Theta\left(N^{3}\right)$ states, each requiring $\Theta(1)$ time.
$\Theta\left(N^{3}\right)$ running time and memory.

Improved DP approach - less memory

```
vector<vector<int>> DP = G;
for (int k = 0; k < n; ++k) // k is outermost
    for (int i = 0; i < n; ++i)
    for (int j = 0; j < n; ++j)
        DP[i][j] = min(DP[i][k] + DP[k][j], DP[i][j]);
```

$\Theta\left(N^{3}\right)$ running time, $\Theta\left(N^{2}\right)$ memory.

Applications

Everything that needs shortest paths

- Diameter of a graph.
- Possibly some task of the first round

Applications

Everything that needs shortest paths

- Diameter of a graph.
- Possibly some task of the first round

The algorithm also works on weighted graphs with negative weights.

