Luc Haller

Swiss Olympiad in Informatics

January 7, 2017

Luc Haller Cupsort



@ Sort cups standing in a row by color.

@ How many times do we need to swap two adjacent cups?

Luc Haller Cupsort



AAAA
g
AAAA
g
AAAA

Luc Haller Cupsort




Subtask 1: Problem statement

@ Only two colors: red and blue (in the input: 0 and 1)
@ Want to put all the red cups left of the blue cups.
@ Only yes/no: Can we sort the cups with only 0 or 1 swap?

o Example:

AAAA - AAAA PO

Luc Haller Cupsort



@ ldea:

e Skip to the first blue cup
o Iff there is a red cup farther than directly behind it, it is
impossible to sort with one swap.

e O(n) running time, input size is also O(n)

Luc Haller Cupsort



Subtask 2

@ Same as before, but want to know how many swaps we need.

@ Observation: We need to swap every blue cup with every red
cup that comes after it.

@ These are all swaps: no need to swap cups of the same color.

Luc Haller Cupsort



@ Counter for how many blue cups we have seen already, add
this to the result at every red cup we encounter.

e Again O(n) running time

Luc Haller Cupsort



Subtask 3

@ Now, there are more than two colours, but all cups have
distinct colours.

@ Idea: Use a suitable sorting algorithm, modifying it to count
the number of swaps that it makes.

@ Note: The number of "swaps” is mathematically speaking the
number of inversions in the list.

Luc Haller Cupsort



Easy sorting algorithm: Bubble Sort

@ Compare each number with the one after it, swap if first one
is larger.

@ Repeat until sorted.
e O(n?) running time
o Note: The number of inversions is also O(n?), so if we want

to be faster, we have to sometimes simulate multiple swaps
with one step of our algorithm.

Luc Haller Cupsort



Faster sorting algorithm: Merge Sort, O(nlog n)

Idea:
@ Split list into two halves, sort these recursively.
@ Merge the two now sorted halves, which we can do in linear
time using the knowledge that they are sorted.

@ The inversion counting happens in the merging step: Each
element of the second list needs to be swapped with all larger
elements of the first half.

Luc Haller Cupsort



Subtasks 4 and 5

@ For Subtask 3, Bubble Sort was fast enough.
@ Subtask 4: Multiple cups may have the same colour.

@ Only difference in solution compared to Subtask 3: Take care
not to swap cups of the same colour.

@ Subtask 5: More cups than before: Need an O(nlog n)
solution to solve it fast enough.

@ Also, cup groups instead of single cups: Numbers to be sorted
have weights. The number of cup swaps to swap two groups
is the product of the group sizes.

Luc Haller Cupsort



@ More detailed write up in solution booklet.
@ Implementations (C++ code) in solution booklet.

@ Other solutions were possible, particularly for Subtask 1 there
are many different ad hoc approaches, and for Subtask 5 there
is an alternative O(nlog n) solution (in solution booklet).

Luc Haller Cupsort



	Introduction
	Task story
	Example

	Subtask 1
	Problem
	Solution

	Subtask 2
	Idea
	Solution

	Subtask 3
	Idea
	Slow solution
	Fast solution

	Subtasks 4 and 5
	Summary

