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@ Sort cups standing in a row by color.

@ How many times do we need to swap two adjacent cups?
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Subtask 1: Problem statement

@ Only two colors: red and blue (in the input: 0 and 1)
@ Want to put all the red cups left of the blue cups.
@ Only yes/no: Can we sort the cups with only 0 or 1 swap?

o Example:

AAAA - AAAA PO
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@ ldea:

e Skip to the first blue cup
o Iff there is a red cup farther than directly behind it, it is
impossible to sort with one swap.

e O(n) running time, input size is also O(n)
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Subtask 2

@ Same as before, but want to know how many swaps we need.

@ Observation: We need to swap every blue cup with every red
cup that comes after it.

@ These are all swaps: no need to swap cups of the same color.
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@ Counter for how many blue cups we have seen already, add
this to the result at every red cup we encounter.

e Again O(n) running time
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Subtask 3

@ Now, there are more than two colours, but all cups have
distinct colours.

@ Idea: Use a suitable sorting algorithm, modifying it to count
the number of swaps that it makes.

@ Note: The number of "swaps” is mathematically speaking the
number of inversions in the list.
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Easy sorting algorithm: Bubble Sort

@ Compare each number with the one after it, swap if first one
is larger.

@ Repeat until sorted.
e O(n?) running time
o Note: The number of inversions is also O(n?), so if we want

to be faster, we have to sometimes simulate multiple swaps
with one step of our algorithm.
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Faster sorting algorithm: Merge Sort, O(nlog n)

Idea:
@ Split list into two halves, sort these recursively.
@ Merge the two now sorted halves, which we can do in linear
time using the knowledge that they are sorted.

@ The inversion counting happens in the merging step: Each
element of the second list needs to be swapped with all larger
elements of the first half.
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Subtasks 4 and 5

@ For Subtask 3, Bubble Sort was fast enough.
@ Subtask 4: Multiple cups may have the same colour.

@ Only difference in solution compared to Subtask 3: Take care
not to swap cups of the same colour.

@ Subtask 5: More cups than before: Need an O(nlog n)
solution to solve it fast enough.

@ Also, cup groups instead of single cups: Numbers to be sorted
have weights. The number of cup swaps to swap two groups
is the product of the group sizes.
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@ More detailed write up in solution booklet.
@ Implementations (C++ code) in solution booklet.

@ Other solutions were possible, particularly for Subtask 1 there
are many different ad hoc approaches, and for Subtask 5 there
is an alternative O(nlog n) solution (in solution booklet).
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