
First Round SOI 2021

Solution Booklet

Swiss Olympiad in Informatics

15 September – 30 November 2020

First Round, 2020/2021
Task stairracing

Stairracing
Task Idea Bibin Muttappillil
Task Preparation Timon Gehr
Description English Timon Gehr
Description German Johannes Kapfhammer
Description French Florian Gatignon
Solution Timon Gehr
Correction Jan Schär

We are given two arrays 00 , . . . , 0#−1 and 10 , . . . , 1#−1 describing the heights of skyscrapers on
both sides of a road. Our goal is to find a longest possible racing track: we want to maximize the
expression 08 +

��8 − 9�� + 1 9 over indices 8 and 9.
Subtask 1: # = 1
If # = 1, there is only one candidate for 8 and 9, namely 8 = 0 and 9 = 0. If we evaluate our
objective function for those values of 8 and 9, we obtain 00 + 10. I.e., our task is to add two
numbers:

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int solve(int n, const vector<int> &a, const vector<int> &b){
5 return a[0] + b[0];
6 }
7

8 int main(){ // (i/o, the same for all subtasks)
9 int t;

10 cin >> t;
11 for(int i = 1; i <= t; i++){
12 int n;
13 cin >> n;
14 vector<int> a(n), b(n);
15 for(int i = 0; i < n; i++) {
16 cin >> a[i];
17 }
18 for(int j = 0; j < n; j++) {
19 cin >> a[k];
20 }
21 cout << "Case #" << i << ": " << solve(n, a, b) << '\n';
22 }
23 }

Subtask 2: # = 2
If # = 2, there are four possible racing tracks and we compute the longest one:

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int solve(int n, const vector<int> &a, const vector<int> &b){
5 return max({a[0] + b[0], a[0] + 1 + b[1],
6 a[1] + b[1], a[1] + 1 + b[0]});
7 }

Subtask 3: # ≤ 103

If # ≤ 103, there are at most 106 possible different racing tracks. Therefore, we can again just
iterate through all of them and compute the longest one:

2/41

First Round, 2020/2021
Task stairracing

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int solve(int n, const vector<int> &a, const vector<int> &b){
5 int longest = 0;
6 for(int i = 0; i < n; i++) {
7 for(int j = 0; j < n; j++) {
8 longest = max(longest, a[i] + abs(i-j) + b[j]);
9 }

10 }
11 return longest;
12 }

Subtask 4: # ≤ 105

Now, there can be inputs for which there are up to 1010 possible different racing tracks. To solve
such instances efficiently, we need to be more clever than before1: we no longer want to explicitly
consider all possible racing tracks. To this end, we first rewrite our objective function so that it
considers the cases 8 ≤ 9 and 9 ≤ 8 separately (this is a common trick we use to eliminate absolute
values from an expression):

max
1≤8 , 9<#

(
08 +

��8 − 9�� + 1 9) = max
(

max
1≤8≤ 9<#

(
08 − 8 + 9 + 1 9

)
, max

1≤ 9≤8<#

(
08 + 8 − 9 + 1 9

))
We will optimize our two partial objectives using dynamic programming. For instance, we have

max
1≤8≤ 9<#

(
08 − 8 + 9 + 1 9

)
= max

1≤ 9<#

(
2 9 + 1 9

)
, where 2 9 := max

1≤8≤ 9

(
08 − 8 + 9

)
.

We now derive a recurrence relation for the values 2 9 by considering the cases 8 ≤ 9 − 1 and
8 = 9 separately:

2 9 = max
1≤8≤ 9

(
08 − 8 + 9

)
= max

(
max

1≤8≤ 9−1

(
08 − 8 + 9

)
, 0 9 − 9 + 9

)
= max

(
max

1≤8≤ 9−1

(
08 − 8 + (9 − 1)

)
+ 1, 0 9

)
= max(2 9−1 + 1, 0 9).

For the case 9 ≤ 8, we can compute values 38 := max1≤ 9≤8
(
8 − 9 + 1 9

)
in the same way. This

leads to the following linear-time solution:

1 #include <bits/stdc++.h>
2 using namespace std;
3

4 int solve(int n, const vector<int> &a, const vector<int> &b){
5 int longest = 0;
6 int c = -1, d = -1;
7 for(int k = 0; k < n; k++) {
8 c = max(c + 1, a[k]);
9 d = max(d + 1, b[k]);

10 longest = max({longest, c + b[k], a[k] + d});
11 }
12 return longest;
13 }

1It might however have been possible to solve this subtask inefficiently yet below the time limit by parallelizing our
brute-force computation from before on a sufficiently powerful machine. This will no longer be possible in further
rounds because the programs will be evaluated on an automated judging system instead of your own computer.

3/41

First Round, 2020/2021
Task secretcode

Secret Code
Task Idea Johannes Kapfhammer
Task Preparation Christopher Burckhardt
Description English Christopher Burckhardt
Description German Luc Haller
Description French Florian Gatignon
Solution Christopher Burckhardt
Correction TODO

This task revolved around mouse Stofl inventing his own encryption protocol. However he
needed help determining if his encrypted words could be decoded simply. A decoding was
deemed to be simple if each letter from the encrypted word could be replaced with another letter
to retrieve the decrypted cleartext.

Subtask 1: Two Letters (25 Points)
Subtask 2: Lots of Letters (25 Points)
In both of these subtasks you were given two words, the encrypted and decrypted word. You
had to determine if it was possible to decode the encrypted word to the decrypted word.

This is not possible if and only if a letter from the first/encrypted word is at the same po-
sition as multiple different letters in the second/decrypted word. As this being the case implies a
letter being replaced with multiple different letters, which is not allowed in a simple decoding.

Otherwise we may simply replace each letter in the first word, with the letter that appears at the
same position in the second word. To store this translation table we use a map, a map allows us
to store what letter each letter in the first word should be replaced with.
Since each letter must only be considered once the time complexity is O(!) where L is the length
of each word and the space complexity is also O(!).

1 #include <bits/stdc++.h>
2

3 using namespace std;
4

5 void solve(){
6 string enc, dec;
7 cin >> enc >> dec;
8 map<char, char> dic;
9 for(int i = 'a'; i<= 'z'; i++){

10 dic[i] = '#';
11 }
12 for(int i = 0; i< enc.size(); i++){
13 if(dic[enc[i]] != '#' && dic[enc[i]] != dec[i]){
14 cout << "No" << '\n';
15 return;
16 }
17 dic[enc[i]] = dec[i];
18 }
19 cout << "Yes" << '\n';
20 for(auto[key, val] : dic){
21 if(val == '#'){
22 cout << 'a';
23 }else{
24 cout << val;
25 }
26 }
27 cout << '\n';

4/41

First Round, 2020/2021
Task secretcode

28 }
29

30 signed main(){
31 ios_base::sync_with_stdio(false);
32 cin.tie(NULL);
33

34 int t;
35 cin >> t;
36 for(int i = 0; i< t; i++){
37 cout << "Case #" << i<<": ";
38 solve();
39 }
40 }

Subtask 3: Two Mice (25 Points)
Subtask 4: Lots of Mice (25 Points)
In the last two subtasks you were tasked with finding a word that as many encryptions as possible
could be decrypted to, additionally this word had to have as many unique letters as possible.

The second requirement was what made these subtasks difficult. Since every encryption
could be decoded to a string of ‘a’, by simply replacing every letter with an ‘a’. To satisfy both
requirements, two positions in the decoded word have the same letter if and only if, the same
letter is present at these positions in one of the encrypted words. Using this insight we can
reformulate the problem as a graph, where each position is a node and two nodes are connected
if the same letter appears at these two positions in one of the encrypted words. Now if two
nodes are connected they must share the same letter. Because of this any node reachable from a
given node must share the same letter. We now look at each position of the decrypted word,
if a position has not been assigned a letter yet, we assign the next letter of the alphabet to this
position and then assign this letter to all other reachable positions using DFS or BFS.
Once we have found a valid decoding using the maximum amount of unique letters, we may use
the algorithm in subtask 2 to genarate a translation table for each encryption.
The final time complexity of this algorithm is O(# · !), where N is the number of words and L is
the length of each word, since we only add two edges per letter of the input and DFS is linear in
the number of edges. The same argument applies to space complexity which is also O(# · !).

1 #include <bits/stdc++.h>
2

3 using namespace std;
4

5 void dfs(int u, vector<char>& dec, vector<vector<int>>& g){
6 for(auto v : g[u]){
7 if(dec[v] != '#')continue;
8 dec[v] = dec[u];
9 dfs(v, dec, g);

10 }
11 }
12

13 void solve(){
14 int N, L;
15 cin >> N >> L;
16 vector<string> words;
17 for(int i = 0; i< N; i++){
18 string tmp; cin >> tmp;
19 words.push_back(tmp);
20 }
21 vector<vector<int>> g(L, vector<int>());
22 for(auto enc : words){
23 map<char, int> last_pos;
24 for(int i = 'a'; i<= 'z'; i++)last_pos[i] = -1;
25 for(int i = 0; i< enc.size(); i++){

5/41

First Round, 2020/2021
Task secretcode

26 char c = enc[i];
27 if(last_pos[c] != -1){
28 g[last_pos[c]].push_back(i);
29 g[i].push_back(last_pos[c]);
30 }
31 last_pos[c] = i;
32 }
33 }
34 vector<char> dec(L, '#');
35 int counter = 0;
36 for(int i = 0; i< L; i++){
37 if(dec[i] == '#'){
38 dec[i] = 'a' + counter;
39 counter++;
40 dfs(i, dec, g);
41 }
42 }
43 cout << counter << ' ';
44 for(auto c : dec)cout << c;
45 cout << '\n';
46 for(auto enc : words){
47 map<char, char> dic;
48 for(int i = 'a'; i<= 'z'; i++)dic[i] = '#';
49 for(int i = 0; i< enc.size(); i++)dic[enc[i]] = dec[i];
50 for(auto[key, val] : dic){
51 if(val == '#'){
52 cout << 'a';
53 }else{
54 cout << val;
55 }
56 }
57 cout << '\n';
58 }
59 }
60

61 signed main(){
62 ios_base::sync_with_stdio(false);
63 cin.tie(NULL);
64

65 int t;
66 cin >> t;
67 for(int i = 0; i< t; i++){
68 cout << "Case #" << i<<": ";
69 solve();
70 }
71 }

6/41

First Round, 2020/2021
Task bamboo

Bamboo
Task Idea Johannes Kapfhammer
Task Preparation Fabian Haller
Description English Fabian Haller
Description German Fabian Haller
Description French Florian Gatignon
Solution Michal Svagerka
Correction TODO

Subtask 1: Three Bamboos (15 points)
Consider cutting bamboos 8 , 8 + 1, . . . , 9 − 1 to height ℎ. In an optimal solution, ℎ equals to the
desired height of one of the bamboos, that is, there exists 8 ≤ : < 9 such that ℎ: = ℎ.

We can prove this by contradiction. Assume we cut bamboos 8 , 8 + 1, . . . , 9 − 1 to height ℎ and
for all 8 ≤ : < 9 holds ℎ: < ℎ. For each : there are two cases:

• Height of :-th bamboo was smaller than ℎ before this cut and this bamboo is unaffected.
• Height of :-th bamboo was at least ℎ, but the desired height ℎ: < ℎ. This means that in

some point in the future we will cut the :-th bamboo again.

In both cases removing the cut does not affect the end result and leads to a solution using one
fewer cut.

As a result, for each cut we pick one of the contiguous subsets of bamboos (there are 6 of them)
and one of their heights (there are at most 3 of them). Also, note that it is always possible to
solve the problem using three cuts: (0, 1, ℎ0), (1, 2, ℎ1), (2, 3, ℎ2). Is is thus sufficient to try all
possibilities for two cuts – there are at most (3 · 6)2 = 324 of them.

1 #include <iostream>
2 #include <vector>
3

4 using namespace std;
5 constexpr int INF = 1e9;
6

7 int min_cuts(const vector<int> &wanted, const vector<int> ¤t, int cuts) {
8 int N = wanted.size();
9 if (wanted == current) return cuts;

10 if (cuts == N-1) return N;
11

12 int ans = N;
13 for (int i = 0; i < N; ++i) {
14 for (int j = i+1; j <= N; ++j) {
15 for (int k = i; k < j; ++k) {
16 vector<int> changed = current;
17 for (int l = i; l < j; ++l) changed[l] = min(changed[l], wanted[k]);
18 ans = min(ans, min_cuts(wanted, changed, cuts+1));
19 }
20 }
21 }
22 return ans;
23 }
24

25 int main() {
26 int T; cin >> T;
27 for (int t = 0; t < T; ++t) {
28 int N; cin >> N;
29 vector<int> H(N);
30 for (int &h: H) cin >> h;

7/41

First Round, 2020/2021
Task bamboo

31 cout << "Case #" << t << ": "min_cuts(H, vector<int>(N, INF), 0) << '\n';
32 }
33 }

Subtask 2: Two Heights (25 points)
First consider the case where ℎ8 = 1 for all 0 ≤ 8 < # . This can be simply solved using the cut
(0, # , 1), that is, cutting everything to height 1.
From now on, we assume that there exists 8 such that ℎ8 = 2. It is evident that we can start

with the cut (0, # , 2), that is, cutting everything to height 2. This is because we need at least a
single cut to height 2 and all such cutsve all cuts can be moved to happen earlier than all cuts to
height 1. Then we merge all 2 cuts to a single one that spans the whole range. These changes
cannot make the solution worse.

Now, we need to perform some cuts to height 1. It is clear that it is optimal to use cuts that are
as wide as possible, that is, the whole range between two 2s, or either ends of the array. We can
simply count the number of ranges of consecutive ones by counting all ones that have either 2 or
the end of the array to the left of them.

1 #include <iostream>
2 #include <vector>
3

4 using namespace std;
5

6 int main() {
7 int T; cin >> T;
8 for (int t = 0; t < T; ++t) {
9 int N; cin >> N;

10 vector<int> H(N);
11 for (int &h: H) cin >> h;
12

13 if (count(H.begin(),H.end(),2) == 0) {
14 cout << "Case #" << t << ": 1\n";
15 } else {
16 int answer = 1;
17 for (int i = 0; i < N; ++i) {
18 if (H[i] == 1 && (i == 0 || H[i-1] == 2)) {
19 ++answer;
20 }
21 }
22 cout << "Case #" << t << ": " << answer << '\n';
23 }
24 }
25 }

Subtask 3: Small Forest (25 points)
Let’s generalize the idea from the previous subtask. What we did in each step was:

• Select (one of) the maximal ranges in which no bamboo is at correct height yet.
• Cut all bamboos to the maximum of the desired heights among those in the range.

Why does this work? First, observe that we can always rearrange each solution such that
heights of all cuts are non-increasing. Secondly, we cannot lose anything by cutting the largest
available range.

This immediately yields a solution for this subtask: find all maximums in the array and cut the
whole array to this maximum height. This splits the array into some amount of smaller subarrays
(possibly empty), and we solve the same problem recursively on these subarrays.

1 #include <iostream>
2 #include <vector>
3

4 using namespace std;

8/41

First Round, 2020/2021
Task bamboo

5

6 int min_cuts(const vector<int>&H, int from, int to) {
7 // empty array
8 if (from >= to) return 0;
9

10 int maximum = *max_element(H.begin() + from, H.begin() + to);
11 int left = from;
12 int answer = 1;
13 for (int i = from; i < to; ++i) {
14 if (H[i] == maximum) {
15 answer += min_cuts(H, left, i);
16 left = i+1;
17 }
18 }
19 answer += min_cuts(H, left, to);
20 return answer;
21 }
22

23 int main() {
24 int T; cin >> T;
25 for (int t = 0; t < T; ++t) {
26 int N; cin >> N;
27 vector<int> H(N);
28 for (int &h: H) cin >> h;
29

30 cout << "Case #" << t << ": " << min_cuts(H, 0, N) << '\n';
31 }
32 }

To analyze the complexity of the above solution, note that when min_cuts is called on a
subarray of length :, the total length of all subarrays on which min_cuts is invoked recursively is
at most : − 1, as at least one element, namely the maximum, isn’t used in any of the recursive calls.
To eliminate this maximum element, we do O(:) work. This implies that the time complexity of
the whole solution is O(#2).

Subtask 4: Large Forest (35 points)
The expensive part of the solution from the previous subtask is the linear processing of the
subarray to find the value of maximum and all its occurrences. There are at least two ways of
speeding this up.
The first solution doesn’t need any additional observation. Recall that we can perform all

cutting operations in a non-increasing order of height. Hence, we can use a single sort to find the
order in which the cuts will be performed.

We will maintain a set of intervals of the original array that still need cutting. Initially, this set
will contain just the interval [0, #). When processing the cuts of height ℎ, find the intervals to
which all the bamboos with height ℎ belong. The number of such distinct intervals equals the
number of cuts of height ℎ to be performed. Following this we simply split the intervals into
smaller ones.
1 #include <iostream>
2 #include <vector>
3 #include <map>
4 #include <set>
5

6 using namespace std;
7

8 int main() {
9 int T; cin >> T;

10 for (int t = 0; t < T; ++t) {
11 int N; cin >> N;
12 vector<int> H(N);
13 for (int &h: H) cin >> h;
14

15 map<int, vector<int>> byHeight;

9/41

First Round, 2020/2021
Task bamboo

16 for (int i = 0; i < N; ++i) byHeight[H[i]].push_back(i);
17

18 // We store the right point of each interval to make updating easy.
19 set<int> intervals{N};
20 int answer = 0;
21 for (auto it = byHeight.rbegin(); it != byHeight.rend(); ++it) {
22 int current_interval = -1;
23 for (int pos: it->second) {
24 // Find the interval to which index 'pos' belongs.
25 // The right point of this interval is going to be the
26 // smallest right point larger than 'pos'.
27 auto interval = intervals.upper_bound(pos);
28

29 // The bamboos of given height are processed in increasing
30 // order of their indices. As a result, we can compute their
31 // count by simply calculating the number of bamboos that
32 // belong to a different interval than the previous bamboo.
33 if (current_interval != *interval) {
34 current_interval = *interval;
35 answer++;
36 }
37

38 // Cutting a bamboo at 'pos' creates a new interval with
39 // right-most point at 'pos'. Again, since bamboos of same
40 // height are processed from left to right, we can add this
41 // right away, and it won't negatively affect future queries.
42 intervals.insert(pos);
43 }
44 }
45

46 cout << "Case #" << t << ": " << answer << '\n';
47 }
48 }

The processing of each bamboo costs O(log#) (map insert, set query and set insert). The total
complexity is O(# log#).

There is another solution. Let’s say that each cut has cost 1. When we perform cut on interval
[0, 1) to height ℎ, this cost is charged to one of the bamboos on the interval [0, 1) that have desired
height ℎ. Recall that none of the bamboos in this interval have larger desired height, in other
words, ℎ is maximum on interval [0, 1). Without loss of generality, we will charge the cost of the
operation to the left-most maximum on an interval.

In order to determinewhich elements are the left-mostmaxima, we look atmaximums of certain
subarrays. Consider element at position : and compute the suffix maximums B8 = <0G:−1

9=8
ℎ 9 ,

that is, maximums of all subarrays that end just to the right of :. Note that these maximums are
non-increasing when 8 is increasing.

The following is true: : the left-most maximum, if and only if the set {B8}:−1
8=1 does not contain

ℎ: as a value. Let’s prove it.
Assume that ℎ: ∈ {B8}:−1

8=1 . Let 9 be the largest index for which this is true. Then we clearly
have ℎ 9 = ℎ: and ℎ; < ℎ 9 for all 9 < ; < : (otherwise B 9 ≠ ℎ 9 or 9 is not maximal). This means
that a cut containing both bamboos 9 and : to height ℎ: can be performed, as it doesn’t cut any
bamboo in-between to height smaller than it should.

For the other direction, assume that ℎ: is the left-most maximum. There are two cases. Either
there is no 9 < : for which ℎ 9 ≥ ℎ: and we are done. Otherwise, let 9 be the largest of them. We
know that the suffix maxima B8 for 8 > 9 are smaller, because all elements in (9 , :) are smaller.
Since : is the left-most maximum, we know that ℎ 9 > ℎ: . As a result B8 > ℎ: for 8 ≤ 9 and we are
done.
To implement this solution, we process the array from left to right, and keep the set of suffix

maximums. Note that we maintain just the set, without possible duplicates. How does this set
change when we add new element ℎ:? Clearly, all elements smaller than ℎ: will cease to be
suffix maximums, and ℎ: will become a new suffix maximum (if it wasn’t already). This can be
implemented using a set in a straightforward fashion and leads to a O(# log#) solution.

10/41

First Round, 2020/2021
Task bamboo

We can, however, do even better. Recall that suffix maxima occur in non-increasing order, and
we only ever remove some of the smallest ones, and then add a new one that is the smallet of the
remaining. Hence, we can store all of the maxima in a stack in a sorted order.

1 #include <iostream>
2 #include <vector>
3 #include <stack>
4

5 using namespace std;
6

7 int main() {
8 int T; cin >> T;
9 for (int t = 0; t < T; ++t) {

10 int N; cin >> N;
11 vector<int> H(N);
12 for (int &h: H) cin >> h;
13

14 stack<int> maxima;
15 int answer = 0;
16 for (int i = 0; i < N; i++) {
17 while (!maxima.empty() && maxima.top() < H[i]) maxima.pop();
18 if (maxima.empty() || maxima.top() > H[i]) {
19 answer++;
20 maxima.push(H[i]);
21 }
22 }
23 cout << "Case #" << t << ": "<< answer << endl;
24 }
25 }

This solution has time complexity O(#). This is because we only add O(#) elements to stack,
hence only O(#) elements can be also removed from it.

11/41

First Round, 2020/2021
Task batteryfix

Battery Fix
Task Idea Bibin Muttappillil
Task Preparation Bibin Muttappillil
Description English Bibin Muttappillil
Description German Jan Schär
Description French Elias Boschung
Solution Daniel Rutschmann, Johannes Kapfhammer, Bibin Muttappillil
Correction Bibin Muttappillil, Johannes Kapfhammer, Tobias Feigenwinter

We are given a permutation ? of {0, 1, ..., 2 · # − 1} lying on a circle. Those are our pole levels
?8 . A wire connecting the pole levels ?8 and ? 9 has the power |?8 − ? 9 |. Our goal is to find a
perfect matching 1 of maximum power 2, where the wires don’t overlap.

Observation: Overlapping
Let’s denote that a wire (8 , 9) connects the poles at positions 8 and 9 where w.l.o.g 3 8 < 9. Two
wires (8 , 9) and (8′, 9′) (w.l.o.g. 8 < 8′) are overlapping if and only if

8′ < 9 < 9′

Intuitively this means that two wires overlap if and only if one of them starts in the range of the
other and ends up outside. So 8 < 9 < 8′ < 9′ and 8 < 8′ < 9′ < 9 wouldn’t be overlapping.

Subtask 2: Small Battery (10 points)
In this subtask # is small enough to test every matching and then take the maximum of the ones
that don’t overlap.

To see that we can calculate the number of matchings: For the first pole we have 2# −1 possible
end poles. If we remove this wire we are left with a graph of 2# − 2 poles ans we can apply
the same principle again to find the number of matching in the smaller graph. Continuing this
inductive argument we can see that we need to test at most (2# − 1) · (2# − 3) · (2# − 5)...4 · 2
matchings.
The correctness follows from the fact that we will test literally every possible matching and

therefor we will eventually encounter one of the optimal ones.
This approach can be implemented in O(2><?;820C43) runtime and O(#)memory (we only

need to keep track of the matching of the poles).
Solution code will be added soon

Observation: Maximum Power
Let’s call the poles with levels grater or equal to # ’greater’ poles and the one with levels smaller
than # ’smaller’ poles. One crucial observation is that the optimal can only be achieved by
summing up all the levels of the ’greater’ poles and subtracting the ones from ’smaller’ poles.
This means that we want to always connect a ’greater’ pole with a ’smaller’ pole.

To show this we will do a proof of contradiction: Assume that we have an optimal solution
where not all wires connect a ’greater’ and a ’smaller’ pole. Since the number of ’greater’ poles
and ’smaller’ poles are equal it means that if a wire connects two ’greater’ poles, let’s call them 6
and ℎ, then another wire has to connect two ’smaller’ poles, let’s call them B and C. The same

1perfect matching means that every pole is connected to exactly one other pole
2with maximum power we mean the sum of the powers should be as large as possible
3read the example on wikipedia.org if you don’t know w.l.o.g. https://en.wikipedia.org/wiki/Without_loss_of_
generality

12/41

https://en.wikipedia.org/wiki/Without_loss_of_generality
https://en.wikipedia.org/wiki/Without_loss_of_generality

First Round, 2020/2021
Task batteryfix

argument works the other ways around. Assume w.l.o.g. ;6 > ;ℎ > ;B > ;C . If we now would
reconnect the wires to 6 − −B and ℎ − −C the power change would be

−(|;6 − ;ℎ | + |;B − ;C |) + (|;6 − ;B | + |;ℎ − ;C |) = −;6 + ;ℎ − ;B + ;C + ;6 − ;B + ;ℎ − ;C = 2;ℎ − 2;B > 0

(subtracting the powers of the old wire and adding the powers of the new ones). By reconnecting
the wires we achieved a higher power which contradicts the assumption that the solution was
optimal. Therefore every wire has to connect a ’greater’ and a ’smaller’ pole.

Observation: Reduction to a Binary Problem
With the observation above we can reduce our original problem to a simpler one: Convert all the
’greater’ poles to 1 and all the ’smaller’ poles to 0. Now the question is just if it is possible to
connect every 1 with a 0 without overlapping and how to find such a matching. As it turns out
it is actually always possible which means we don’t need to look for a solution which doesn’t
achieve the maximum possible power.

Subtask 1: Ordered (10 points)
In this subtask the permutation is ordered meaning that ?8 = 8 for every 8. With the above
observation we can reduce this problem to one where ?8 = 0 for 8 < # and ?8 = 1 for 8 ≥ # with
the goal to find a non-overlapping matching. A solution is to always connect the pole 8 with the
pole (2# − 1) − 8. 4

Correctness. This is a perfect matching as every pole is connected to exactly one other. Every
pair of wires (8 , 2# − 1 − 8) and (9 , 2# − 1 − 9) (w.l.o.g. 8 < 9) aren’t overlapping as they fulfill
the inequality 8 < 9 < 2# − 1 − 9 < 2# − 1 − 8 (see Observation: Overlapping). And from
the observation of maximum power we also know that no other matching has a higher power.
Therefore we have found a correct solution.

This approach can be implemented in O(#) runtime, as we only need one loop from 0 to # − 1,
and O(1)memory, as we only have constant size variables.

1 #include <bits/stdc++.h>
2

3 using namespace std;
4

5 #define int long long
6

7 int N;
8 vector<int> potentials;
9

10 void solve(){
11 for(int i = 0; i < N; i++){
12 cout << i << " " << 2*N - 1 - i << "\n";
13 }
14 }
15

16 signed main() {
17

18 ios_base::sync_with_stdio(false);
19 cin.tie(0);
20

21 cin >> N;
22 potentials = vector<int>(2*N);
23 for(int i = 0; i < 2*N; i++){
24 cin >> potentials[i];
25 }
26

27 solve();
28 }

4As it turns out this is the only solution. The proof for this fact is left as an exercise for the reader ;)

13/41

First Round, 2020/2021
Task batteryfix

Observation: Good Wires
Notice that if we connect two poles 8 and 9 with a wire we create two sections: the poles starting
from 8 + 1%(2# − 1)walking clockwise until 9 − 1%(2# − 1) and 9 + 1%(2# − 1) to 8 − 1%(2# − 1)
(the %(2# − 1) is here in case we walk over 2# − 1 to 0). We can look at each section again as
a smaller ’circle’ as the actual form of the figure doesn’t matter, as long as they have the same
property for overlapping wires. So connecting a wire splits the binary problem into two smaller
problems, which we can try to solve recursively.

It could be that if we connect a specific wire that we can’t find a solution to the binary problem
without reconnecting or overlapping said wire. Let’s call those bad wires. If it is still possible to
find a solution we will call it a good wire.
The cool thing is that good wires fulfill a specific property: A wire is good if and only if each

of the resulting sections has equal numbers of 1 and 0.
If we don’t have an equal number of 1 and 0 then it is not possible to solve it, as every wire

connects a 1 with a 0 and thus the need to be available in equal amount.
With induction we can show that it is always possible to solve the binary problem if they have

the same numbers of 1 and 0.
Base Case: For an empty circle it is already solved thus fulfilling our induction hypothesis.
Step: Let’s start from a arbitrary pole G and walk around the circle, keeping track of the

difference between 1 and 0 we’ve seen so far. After the first step the difference will be −1
(assuming w.l.o.g. that the G is a 0). If the last element is a 1 we can connect G with the last
element. Otherwise the difference will be 1 right before the end (as in the end the difference has
to be 0 in the end). And after every element the difference can only change by +1 or −1. With
that we can conclude that there exists a pole where the difference will be 0. If we look at the first
occurrence we see that this pole has to have been a 1 (to increase the difference from something
negative to 0). Thus this pole fulfills the good wire condition and can be connected to G. The
two resulting sub problems are now strictly smaller and they can be solved according to our
induction hypothesis.
One useful result from that is that a wire connecting two neighboring poles (where one is 1

and the other is 0) is always good, because one section is empty and the other contains all the
remaining poles. So each section has still an equal amount of both.

Subtask 3: Medium Battery (10 points)
We can use the result from above to solve the more general problem. We just need to find a 1
next to a 0, connect them with a wire, remove them from the list and do the same thing with the
smaller list until the list is empty.
The correctness follow from our result above as we only connect good wires.
This approach can be implemented in O(#2) runtime, as finding a pair as well as removing

them from the list takes O(#) time, and we need to do it for # wires. We need O(#) space for
the list of not connected poles.

Solution code will be added soon

Subtask 4 (Theoretical): Future Developments
Note, this is a theoretical task. In those a correct solution isn’t enough to get all the points. A
sizable part of the points is also rewarded for explaining why the solution is correct. In this case
things like the ’Observations’ and their respective explanation are what we would expect. You
also need to argue about your runtime and memory usage. For simple algorithms like above a
sentence is usually enough. If it gets more complicated though you have to write up a detailed
analysis of them.

O(#)/O(#) (40 points)
We’ll use the same strategy as in Subtask 3, but we want to find the pairs in a faster fashion.
Notice that it is useless work to start again from the beginning, as deleting a neighboring pair

14/41

First Round, 2020/2021
Task batteryfix

won’t introduce a new pair before. Also at the point of deletion we didn’t even look at the rest of
the poles yet, so it is not necessary to already have them in the list. These two facts allow us to
change our datastructure from a list to a stack. We’ll compare the next element with our current
top of the stack: if we can connect them with a good wire we will do so on remove the top from
the step and look a the element after (which is like deleting in our list before). If we can’t connect
them then we push the current element to the stack (which is like iterating in our list before).
This change will improve the slow step of the previous algorithm of finding and deleting the

pair from O(#) to O(1) and thus leading us to a O(#) runtime solution. The space is still O(#)
as the stack could have # elements in the worst case.
The correctness follows from the correctness of Subtask 3, we just changed how we find and

delete the poles.

1 #include <bits/stdc++.h>
2

3 using namespace std;
4

5 #define int long long
6

7 int N;
8 vector<int> potentials;
9

10

11 bool is_great(int i){
12 return potentials[i] >= N;
13 }
14

15 void solve(){
16 vector<int> stack;
17 for(int i = 0; i < 2*N; i++){
18 if(stack.size() == 0 || is_great(stack.back()) == is_great(i)){
19 stack.push_back(i);
20 }else{
21 cout << stack.back() << " " << i << "\n";
22 stack.pop_back();
23 }
24 }
25 }
26

27 signed main() {
28

29 ios_base::sync_with_stdio(false);
30 cin.tie(0);
31

32 cin >> N;
33 potentials = vector<int>(2*N);
34 for(int i = 0; i < 2*N; i++){
35 cin >> potentials[i];
36 }
37

38 solve();
39 }

Alternative Proof for O(#)/O(#)
I want to show an alternative proof for the stack based solution, as this was by far the most
popular solution. We still require the observations of ’Maximum Power’, ’Reduction to Binary
Problem’ and especially ’Overlapping’ but we don’t need the ’Good Wires’.
In general optimization problems we need to proof that our algorithm terminates, outputs a

valid solution and show that no better solution exists.
The last part is already covered with the ’Maximum Power’ & ’Reduction to a Binary Problem’

part.
For the rest we need some helper observations. First, the stack at each times either contains

only 1 or only 0. That is because we only push to the stack if it’s the same as the top element.
Second, the stack will be empty at the end. Since every element not in a stack is connected by

15/41

First Round, 2020/2021
Task batteryfix

a wire, which is a pair of 0 and 1, and since they were in equal amount in the beginning the
remaining elements in the stack have to have the same amount of 1 and 0. With the first fact this
can only be the case if the stack is empty and thus every pole is connected to exactly one other
pole.

For the overlapping issue we will do a proof of contradiction: Assume we have two wires (8 , 9)
and (8′, 9′) (w.l.o.g. 8 < 9, 8′ < 9′, 8 < 8′) that overlap. Therefor (with the overlapping observation)
they have to fulfill the inequalities: 8 < 8′ < 9 < 9′, which is therefore also the order we iterate
them on the circle. As the stack only contains elements which are not matched yet the elements 8
and 8′ have to be in the stack if we look at 9. Now because a stack is order LIFO (last in, first out)
the element 8′ has to be matched before the element 8 which implies a contradiction with our
assumption that 8′ is connected to 9′ which comes after 9. Therefor two wires can’t overlap in the
output of our solution.

The runtime is exactly O(#) as we have a loop from 0 to 2# − 1 with constant operations in its
body. Therefore we have also shown that it terminates. The stack certainly won’t grow past 2#
elements as every element is in the stack at most once. With subtask 1 as an example it is also
clear that the stack could grow to # elements. Thus the memory needed is also O(#).

O(# · log(#))/O(log(#)) (60 points)
The idea here is to find a good wire for a specific pole, connect them, solve the smaller sub section
recursively and update our state to solve the remaining bigger sub problem. A crucial trick here
is to not explicitly solve the big sub problem recursively. In this ways we can bound the depth of
our recursion. (One can also try to program the function *tail-recursively* and let the compiler
optimize the call away).

Another way to think about it is that we want to split our big subproblem into several smaller
sub problem such that each of them is at most half the size.

To do that efficiently we will iterate from a given start point simultaneously in both directions
(clockwise & counter-clockwise) and for each side keep track of the difference between the
number of *greater* poles and the number of *smaller* poles. We will iterate the two pointer
until one shows to a pole which can be connected with a *good* wire to our start, then we will
connect it with the start and recursively solve the sub problem under the wire we just iterated
through. Note that we only need to pass the start and the end as none of the wires in between
will have been connected. After the recursive call return we will update our current begin and
end to solve the rest of the problem (by finding the next small sub problem).

1 def solve(N, potentials):
2

3 def is_great(i):
4 return potentials[i] >= N
5

6 def solve_segment(begin, end): # end is exclusive
7 if(end <= begin): return
8

9 # setup
10 diff_left, diff_right = 0, 0
11 left, right = begin + 1, end - 1
12

13 while left <= right:
14 if diff_left == 0 and is_great(begin) != is_great(left):
15 print(begin, left)
16 solve_segment(begin + 1, left)
17 # like solve_segment(left + 1, end)
18 # instead of tail-recursion
19 begin = left + 1
20 # re-setup
21 diff_left, diff_right = 0, 0
22 left, right = begin + 1, end - 1
23 elif diff_right == 0 and is_great(begin) != is_great(right):
24 print(begin, right)
25 solve_segment(right + 1, end)

16/41

First Round, 2020/2021
Task batteryfix

26 # like solve_segment(begin, right)
27 begin = begin + 1
28 end = right
29 # re-setup
30 diff_left, diff_right = 0, 0
31 left, right = begin + 1, end - 1
32 else:
33 # iteration
34 diff_left += 1 if is_great(left) else -1
35 left += 1
36 diff_right += 1 if is_great(right) else -1
37 right += -1
38

39 solve_segment(0, 2*N)
40

41

42 n = int(input())
43 p = list(map(int, input().split()))
44

45 solve(n, p)

Correctness. Is our output valid: is every pole connected & are there no overlaps?. Assume
we have an unconnected pole and we will look at the first, in order our algorithm, pole which
isn’t connected. We will look at the time one of the pointers first reaches set pole. This can only
happen at the beginning or right after we have completed a sub call. Therefore our remaining
problem has to have the same number of *greater* and *smaller* poles left (as we assume that the
sub calls correctly solve the problem). We know from the observations that a good wire has to
exist and that we will find it, as we check every pole for its *good* wire condition. This though
contradicts the existence of the unconnected pole. The no overlap part follows from the fact that
the sub problem is solved recursively and thus independently from the other poles. Therefore
there are no poles left in that segment to cross the wire over the sub problem.
Is our solution optimal? This follows directly from the observation of maximum power.
Note that = = 2# for the following sections.
Memory We don’t change the input so it doesn’t count to our memory. The only thing we have

is out recursive function. The memory usage of these is the product of one function call and the
maximum depth of the recursion. The memory usage of one function call is O(1) as we only have
constant variables. The depth is bounded by O(log =) as we guarantee in every call that the size
of the range is at most half. And for such a thing it is well know to reach the base case in at most
log2 = steps. So the total memory is O(log =).

Runtime We only have our recursive function to analyze. Let’s first define :8 as the size of the
sub section we recurse on from the top level (which is the distance of the wires - 1). These have
two useful properties:

∑
8 :8 + 2 = =, the sum of the sub sizes is at the whole size, and :8 ≤ =−2

2 , as
we recurse only on small segments (the ±2 comes from the fact that we have already connected
two poles).
For recursive functions we usually define)(=) as the total runtime of the recursion of size =

(which in our case is the size of the segment). We then have to find a relationship to solve for)(=).
In this case it is)(=) = � · = +∑

8)(:8). The second part sums up all the work for the recursive
calls. The first part is the linear work the function does without the sub calls. The reason it that
for every time we find a sub problem of size :8 we have spent :8 + 2 iterations on both sides to
find it and thus the whole part of finding the sub problems is in O(∑8 :8 + 2) = O(=).

Note that we can actually choose � to be any constant, as long as it is large enough to account
for the linear work. Also with log we mean log2.

We now prove by induction that)(=) ≤ � · (= + 1) · log(= + 2).
Base case:)(0) ≤ � = �(0 + 1) log(0 + 2) This is true if we choose a large enough � as the base

case only returns.

17/41

First Round, 2020/2021
Task batteryfix

Step:

)(=) = � · = +
∑
8

)(:8) (by our analysis) (.1)

= �= +
∑
8

�(:8 + 1)(log(:8 + 2)) (by induction hypothesis) (.2)

≤ �= +
∑
8

�(:8 + 1)(log(= + 2
2)) (using :8 ≤

= − 2
2) (.3)

= �= + �(log(= + 2
2)

∑
8

(:8 + 1) (factoring out) (.4)

≤ �= + �(log(= + 2) − log(2)) · = (using log and
∑
8

:8 + 2 = =) (.5)

= �= log(= + 2) ≤ �(= + 1) log(= + 2) (.6)

Instead of induction one could also use the *Master Theorem*.

O(# · log(#))/O(1) (70 points)
There are various divide-and-conquer solution that run in O(# log#) time with O(log#) space.
We will now describe such a solution that only uses O(1) space. The key idea for this solution is
to turn the input into a balanced bracket sequence, figure out which pairs of brackets belong to
each other and then connect the corresponding poles.

First, we’ll replace each pole with potential 0, . . . , # − 1 by an opening bracket and each pole
with potential #, . . . , 2# − 1 by a closing backet. Next, we’ll cut open the circle. The cutting
point is chosen in such a way that we get a balanced bracket sequence. This can be done in O(#)
time and O(1) space by a simple sweep around the circle. Note that we don’t need to explicitly
form this bracket sequence. For our algorithm, we only need to answer questions of the form
“What is the 8-th bracket from the left and which pole does it correspond to?”, which can be done
in O(1) time and space if we know the cutting point.
A balanced bracket sequence can be uniquely decomposed into pairs of one opening and one

closing bracket such that the opening bracket is to the left of the closing one and such that two
such pairs are either disjoint or one contains the other. For example, such a decomposition might
look like this: ((()) ()) (()). If we then connect the poles in each such pair, then we’ll achieve
maximum power, as we always match an opening brachet with a closing one, and we won’t have
any wire crossings, as there can’t be two bracket pairs forming an intersection like this: (()).
Hence, all we have to do is figure out which opening bracket is paired with which closing one.

Finding bracket pairs
In general, a (possibly unbalanced) bracket sequence looks like this . . .) . . .) . . .) . . . (. . . (. . .
where each . . . is a (possibly empty) balanced bracket sequence. Given such a bracket sequence of
length :, it is possible to iterate over all red brackets from left to right in O(:) time with O(1)
space by sweeping from left to right and keeping track of howmany unmatched opening brackets
we have found so for. If we encounter a closing bracket, then this bracket is red if and only if we
have zero unmatched opening brackets. Similarly, we can iterate over the blue brackets from
right to left.
This allows for the following divide-and-conquer solution: Consider a recursive function

that takes a (possibly unbalanced) bracket sequence and matches all brackets in this sequence
that aren’t red or blue. This function first splits the bracket sequence in half and recursively
solves each part. Next, it simultaneously iterates over the blue brackets in the left half and
over the red brackets in the right half and matches red brackets with blue ones. For example,
in a situation like this) . . . (. . . (. . . (

���) . . .) . . . (. . . (, the brackets would be matched as follows

) . . . (. . . (. . . (
���) . . .) . . . (. . . (, after which the bracket sequence looks like this:) . . . (. . . (. . . (.

18/41

First Round, 2020/2021
Task batteryfix

A recursive implementation would use Θ(log#) stack space. To avoid this, we use an iterative
bottom-up implementation: Initially, every bracket forms a block of size one. In the first iteration,
we’ll merge the first block with the second one, the third block with the fourth one, and so on.
This leaves us with blocks of size two (the last block may be smaller if # is not a power of two).
Next, we’ll merge blocks of size two to get blocks of size four. This is repeated until we’re left
with a single block of size 2# . More precisely, there are log2(2#) iterations. In the 8-th iteration,
we’re given a bunch of blocks of size B = 28 . We merge [0, B − 1]with [B, 2B − 1], merge [2B, 3B − 1]
with [3B, 4B − 1] and so on. Thus, we can use simple for loops to figure out which parts have
to be merged, so we only need O(1) space. The total running time is O(# log#), as there are
O(log#) iterations that each take O(#) time.

1 # O(n log n) time, O(1) space
2 def solve(n, p):
3 # find cutting point
4 offset = 0
5 bal = 0
6 for i,e in enumerate(p):
7 if e < n:
8 bal += 1
9 else:

10 bal -= 1
11 if bal < 0:
12 offset = i+1
13 bal = 0
14 # helper functions to find i-th bracket
15 def index(i):
16 return (offset+i)%(2*n)
17 def get(i):
18 return '(' if p[index(i)] < n else ')'
19

20 s = 1
21 while s <= 2*n:
22 for i in range(0, 2*n-s, 2*s):
23 # merge [i, i+s-1] with [i+s, i+2s-1]
24 l = i+s-1
25 r = i+s
26 while True:
27 # find next unmatched (in left part
28 bal = 0
29 while l >= i:
30 if get(l) == '(':
31 if bal == 0:
32 break
33 bal -= 1
34 else:
35 bal += 1
36 l -= 1
37 # find next unmatched) in right part
38 bal = 0
39 while r < min(i+2*s, 2*n):
40 if get(r) == ')':
41 if bal == 0:
42 break
43 bal -= 1
44 else:
45 bal += 1
46 r += 1
47 if l >= i and r < min(i+2*s, 2*n):
48 yield (index(l), index(r))
49 l -= 1
50 r += 1
51 else:
52 break
53 s *= 2
54

19/41

First Round, 2020/2021
Task batteryfix

55 T = int(input())
56 for t in range(T):
57 n = int(input())
58 p = list(map(int, input().split()))
59

60 print(f"Case #{t}:")
61 for (a, b) in solve(n, p):
62 print(a, b)

20/41

First Round, 2020/2021
Task lilypads

Lily Pads
Task Idea Daniel Rutschmann
Task Preparation Daniel Rutschmann, Johannes Kapfhammer, Martin Chikov
Description English Johannes Kapfhammer, Martin Chikov
Description German Joël Mathys
Description French Florian Gatignon
Solution Daniel Rutschmann
Correction TODO

21/41

First Round, 2020/2021
Task changifalls

Changi Falls
Task Idea Johannes Kapfhammer
Task Preparation Johannes Kapfhammer, Jan Schär
Description English Johannes Kapfhammer
Description German Jan Schär
Description French Elias Boschung
Solution Johannes Kapfhammer
Correction Johannes Kapfhammer

In this task you were given a set of non-intersecting circles, where each circle has a value
ℎ8 . The goal was to find a sequence of at most ! circles where the circles are adjacent and the
values of the circles are increasing, such that the difference between largest and smallest value is
maximized.

The first observation to make is that this is actually a graph task: If we put circles are vertices
and the “adjacency” property as edges, we end up with a graph.
And in fact, the graph is a tree. Let’s say a circle is a parent of another circle if it is adjacent

and its radius is larger. Then the edges represent the adjacency property. Also all edges point to
smaller circles, so there can never be cycles.
So this task actually reduces to two subtasks:

• compute the tree represented by the circles
• find the path of length at most ! of increasing values that maximizes the value difference

in that tree.

Subtask 1: Concentric Circles (15 points)
In the first subtask all circles were concentric, which means that the resulting tree is actually a
path. To compute the order, of the path, one could just sort the circles by radius.

To find the solution, there were many possible approaches. One could first find the best
increasing path and then do the same again for decreasing (or multiply the values by −1). The
code below does this in one go by keeping track of two things:

• the current direction (whether the sequences is increasing or decreasing)
• the earliest possible start of the sequence given the direction.

For a new value, if it keeps the direction, just make the sequence longer. If it changes the direction,
start a new sequence from the previous value.

1 #include <bits/stdc++.h>
2 using namespace std;
3 #define int int64_t
4

5 struct terrace { int x, y, r, h; };
6

7 int solve_sub1() {
8 int N, L; cin >> N >> L;
9 vector<terrace> ts;

10 for (int i=0; i < N; ++i) {
11 terrace t;
12 cin >> t.x >> t.y >> t.r >> t.h;
13 ts.push_back(t);
14 }
15 sort(ts.begin(), ts.end(),
16 [&](terrace const& lhs, terrace const& rhs) {
17 return lhs.r < rhs.r;
18 });
19

22/41

First Round, 2020/2021
Task changifalls

20 bool last_cmp = false;
21 int l = 0;
22 int best = 0;
23 for (int r=1; r < N; ++r) {
24 bool cmp = ts[r-1].h < ts[r].h;
25 if (last_cmp != cmp) {
26 last_cmp = cmp;
27 l = r - 1;
28 }
29 l = max(l, r - L + 1);
30 best = max(best, abs(ts[r].h - ts[l].h));
31 }
32 return best;
33 }
34

35 signed main() {
36 int t; cin >> t;
37 for (int i=0; i<t; ++i)
38 cout << "Case #" << i << ": " << solve_sub1() << '\n' << flush;
39 }

The running time is O(= log =), dominated by the sorting.

Subtask 2: Flowing Inwards (15 points)
The second subtask was already quite tricky: the only restriction was that the heights and the
radii are the same.

This means we need to come up with a good idea on how to build the tree from the input data.
There are two key ideas: first, we can write a function that checks whether some terrace 0

is inside another terrace 1 by checking that 0 has smaller radius and the distance between the
center of 0 and the center of 1 is smaller than the radius of 1. If we square the equations, this can
be done without any use of doubles:

1 int sq(int x) { return x*x; }
2 // is terrace a inside terrace b?
3 bool inside(terrace const& a, terrace const& b) {
4 return a.r < b.r && // a has smaller radius and ...
5 sq(a.x - b.x) + sq(a.y - b.y) < sq(b.r); // a's center is contained inside b
6 }

So why can’t we just check all pairs of terraces and add edges between the pairs that are inside?
Well, because if three terraces 0, 1 and 2 are nested, then 1 is inside 0, 2 is inside 1 but also 2 is
inside 0. And we don’t want an edge beween 2 and 0.

One way of resolving this is by noting that each terrace has exactly one outer terrace. And the
outer terrace is the one with the smallest radius. So we could compute all outer terraces and take
the smallest, but there’s an easier way of doing it: we sort the terraces by radius (which is doing
some kind of topological sort). Then we start with the smallest terrace and move on to larger
ones. We again check all smaller terraces, but we only add those that are inside and have not yet
been added. If 0, 1 and 2 are nested, we first add the pair (1, 2) and when we check the pair (0, 2)
we note that 2 has already been added to 1 and don’t add it to 0 as well.

In code form:
1 struct terrace { int x, y, r, h; };
2 vector<vertex> build_tree(vector<terrace> ts) {
3 // sort in decreasing order of radius
4 sort(ts.begin(), ts.end(), [](terrace const& lhs, terrace const& rhs) {
5 return lhs.r > rhs.r;
6 });
7 const int N = ts.size();
8 vector<vertex> tree(N);
9

10 for (int i=0; i < N; ++i)
11 tree[i].value = ts[i].h;

23/41

First Round, 2020/2021
Task changifalls

12

13 for (int i=N-1; i >= 0; --i)
14 for (int j=i+1; j < N; ++j)
15 if (tree[j].is_root && inside(ts[j], ts[i])) {
16 tree[i].children.push_back(j);
17 tree[j].is_root = false;
18 }
19 return tree;
20 }

The last challenge remaining is to compute the path of length at most ! with largest height
difference.

For that we can do a DFS (depth-first search). We pass along the path to each vertex. Then we
can simply compute the height difference of each node by looking at the vertex in the path !
vertices before.
1 int dfs(int L, vector<vertex> const& tree, int v, vector<int>& path) {
2 path.push_back(tree[v].value);
3 int best = path[max((int)0, (int)path.size()-L)] - path.back();
4 for (auto w : tree[v].children)
5 best = max(best, dfs(L, tree, w, path));
6 path.pop_back();
7 return best;
8 }

This is fast because we pass a copy to the path: we only need to add the current value once and
pop it once. After DFS returns, the path has not changed, that’s why this is correct.

The full code:
1 #include <bits/stdc++.h>
2 using namespace std;
3 #define int int64_t
4

5 struct terrace { int x, y, r, h; };
6

7 int sq(int x) { return x*x; }
8

9 // is terrace a inside terrace b?
10 bool inside(terrace const& a, terrace const& b) {
11 return a.r < b.r && // a has smaller radius and ...
12 sq(a.x - b.x) + sq(a.y - b.y) < sq(b.r); // a's center is contained inside b
13 }
14

15 pair<int, vector<terrace>> read_input() {
16 int N, L; cin >> N >> L;
17 vector<terrace> ts;
18 for (int i=0; i < N; ++i) {
19 terrace t;
20 cin >> t.x >> t.y >> t.r >> t.h;
21 ts.push_back(t);
22 }
23 return {L, ts};
24 }
25

26 struct vertex {
27 vector<int> children;
28 int value = -1;
29 bool is_root = true;
30 };
31

32 vector<vertex> build_tree(vector<terrace> ts) {
33 // sort in decreasing order of radius
34 sort(ts.begin(), ts.end(), [](terrace const& lhs, terrace const& rhs) {
35 return lhs.r > rhs.r;
36 });
37 const int N = ts.size();
38 vector<vertex> tree(N);

24/41

First Round, 2020/2021
Task changifalls

39

40 for (int i=0; i < N; ++i)
41 tree[i].value = ts[i].h;
42

43 for (int i=N-1; i >= 0; --i)
44 for (int j=i+1; j < N; ++j)
45 if (tree[j].is_root && inside(ts[j], ts[i])) {
46 tree[i].children.push_back(j);
47 tree[j].is_root = false;
48 }
49 return tree;
50 }
51

52 int dfs(int L, vector<vertex> const& tree, int v, vector<int>& path) {
53 path.push_back(tree[v].value);
54 int best = path[max((int)0, (int)path.size()-L)] - path.back();
55 for (auto w : tree[v].children)
56 best = max(best, dfs(L, tree, w, path));
57 path.pop_back();
58 return best;
59 }
60

61 int solve_sub2() {
62 auto [L, ts] = read_input();
63 auto tree = build_tree(move(ts));
64 int best = 0;
65 vector<int> path;
66 for (size_t i = 0; i < tree.size(); ++i)
67 if (tree[i].is_root)
68 best = max(best, dfs(L, tree, i, path));
69 return best;
70 }
71

72 signed main() {
73 int t; cin >> t;
74 for (int i=0; i<t; ++i)
75 cout << "Case #" << i << ": " << solve_sub2() << '\n' << flush;
76 }

The running time is O(=2) for computing the tree and O(=) for the DFS; so O(=2) in total.

Subtask 3: Jewel Changi (20 points)
This is the full task but with small limits. In particular, the parsing from before still is fast enough,
but we need some new idea how to deal with water flowing outwards as well as inwards.

One idea is to direct the edges according to value: if 0 has a bigger value then 1, add the edge
0 → 1, otherwise add 1 → 0.
The resulting graph is something that is called a “polytree”. It’s not exactly a tree, as there can

be multiple in-edges and multiple out-edges per vertex. However, the underlying shape is a tree.
This means starting a DFS from each node not only works (as it computes all paths so it is

correct by construction), but is also fast (since there are only very few paths in a tree).

1 #include <bits/stdc++.h>
2 using namespace std;
3 #define int int64_t
4

5 struct terrace { int x, y, r, h; };
6

7 int sq(int x) { return x*x; }
8

9 // is terrace a inside terrace b?
10 bool inside(terrace const& a, terrace const& b) {
11 return a.r < b.r && // a has smaller radius and ...
12 sq(a.x - b.x) + sq(a.y - b.y) < sq(b.r); // a's center is contained inside b
13 }

25/41

First Round, 2020/2021
Task changifalls

14

15 pair<int, vector<terrace>> read_input() {
16 int N, L; cin >> N >> L;
17 vector<terrace> ts;
18 for (int i=0; i < N; ++i) {
19 terrace t;
20 cin >> t.x >> t.y >> t.r >> t.h;
21 ts.push_back(t);
22 }
23 return {L, ts};
24 }
25

26 struct vertex {
27 vector<int> adj;
28 int value = -1;
29 bool is_source = true;
30 };
31

32 vector<vertex> build_polytree(vector<terrace> ts) {
33 // sort in decreasing order of radius
34 sort(ts.begin(), ts.end(), [](terrace const& lhs, terrace const& rhs) {
35 return lhs.r > rhs.r;
36 });
37 const int N = ts.size();
38 vector<vertex> tree(N);
39

40 for (int i=0; i < N; ++i)
41 tree[i].value = ts[i].h;
42

43 for (int i=N-1; i >= 0; --i)
44 for (int j=i+1; j < N; ++j)
45 if (tree[j].is_source && inside(ts[j], ts[i])) {
46 if (ts[i].h > ts[j].h)
47 tree[i].adj.push_back(j);
48 else
49 tree[j].adj.push_back(i);
50 // use simlar to "is_root" before in order to add only direct edges
51 tree[j].is_source = false;
52 }
53

54 // reset is_source and only mark those that have no incoming edges
55 for (int i=0; i < N; ++i)
56 tree[i].is_source = true;
57 for (int i=0; i < N; ++i)
58 for (auto w : tree[i].adj)
59 tree[w].is_source = false;
60

61 return tree;
62 }
63

64 int dfs(int L, vector<vertex> const& tree, int v, vector<int>& path) {
65 path.push_back(tree[v].value);
66 int best = path[max((int)0, (int)path.size()-L)] - path.back();
67 for (auto w : tree[v].adj)
68 best = max(best, dfs(L, tree, w, path));
69 path.pop_back();
70 return best;
71 }
72

73 int solve_sub3() {
74 auto [L, ts] = read_input();
75 auto tree = build_polytree(move(ts));
76 int best = 0;
77 vector<int> path;
78 for (size_t i = 0; i < tree.size(); ++i)
79 if (tree[i].is_source)
80 best = max(best, dfs(L, tree, i, path));
81 return best;

26/41

First Round, 2020/2021
Task changifalls

82 }
83

84 signed main() {
85 int t; cin >> t;
86 for (int i=0; i<t; ++i)
87 cout << "Case #" << i << ": " << solve_sub3() << '\n' << flush;
88 }

This code has O(=2) running time, as a single DFS run takes O(=) time since the underlying
graph is a tree, and we start at most O(=) DFS runs.

Subtask 4: Prepping for a Giant Jewel Changi (25 points)
This subtask was quite difficult, possibly the most difficult subtask of the first round this year.

The idea is to do a scanline approach over one coordinate and make a data structure over the
other coordinate.
We start a scanline at H = −∞ and move it upwards to H = +∞. In the scanline we keep track

of all intersection points of the scanline with the circles, and for each point we remember which
to circle belongs (we explain later how exactly).
When we hit a new circle, we can figure out the direct outer parent of that circle by a case

distinction with the two neighboring points. We then add that circle to the scanline data structure.
When a circle closes, we remove that circle from the data structure.
The data structure is a set<halfcircle, scanline_cmp>. A halfcircle stores a half circle

in the shape of “(” or “)”: center, radius, direction (whether it goes “(” or “)”) and ID of the circle.
scanline_cmp compares the halfcircles by their G coordinate, given H. We will change the H as
the scanline progresses. As the circles don’t intersect, we have the guarantee that the order of the
half-circles does not change, so we are allowed to change H a little bit.

To show this in code, those are the definitions of halfcircle and scanline_cmp:

1 // shape of '(' or ')'
2 struct halfcircle {
3 int x0, y0, r, id;
4 int dir; // +1 for upper half, -1 for lower half
5

6 // get the x coordinate of the halfcircle at position y
7 double x_at_y(double y) const {
8 assert(y0 - r <= y && y <= y0 + r);
9 int cy = y - y0;

10 return x0 + dir*sqrt(r*r - cy*cy);
11 }
12 };
13

14 // comparison operator used in the std::set of this scanline
15 // the y member can be updated dynamically
16 struct scanline_cmp {
17 scanline_cmp(int *y) : y(y) {}
18 int *y;
19

20 bool operator()(halfcircle const& a, halfcircle const& b) const {
21 // sentinel: with id==-1, dir=-1 always smaller, dir=+1 always larger
22 if (a.id == -1 && b.id == -1) return a.dir < b.dir;
23 if (a.id == -1) return a.dir == -1;
24 if (b.id == -1) return b.dir != -1;
25

26 // tie breaker for left-most and right-most points of the same circle
27 if (tie(a.x0, a.y0, a.r) == tie(b.x0, b.y0, b.r))
28 return a.dir < b.dir;
29

30 // otherwise the task guarantees no intersections
31 assert(a.x_at_y(*y) != b.x_at_y(*y));
32 return a.x_at_y(*y) < b.x_at_y(*y);
33 }
34 };

27/41

First Round, 2020/2021
Task changifalls

So what about the scanline? For each circle we define two events:

• at H − A we “open” the circle by adding the halfcircles “(” and “)”.
• at H + A we “close” the circle by removing the halfcircles again.

We order the events such that for a fixed H we first handle all closing events and then all opening
events.

1 struct terrace { int x, y, r, h; };
2

3 int solve_sub4() {
4 int n; cin >> n;
5 vector<terrace> ts;
6 vector<pair<int, int>> events;
7 for (int i=0; i<n; ++i) {
8 terrace t;
9 cin >> t.x >> t.y >> t.r >> t.h;

10 ts.push_back(t);
11 assert(t.r > 0);
12 events.emplace_back(t.y - t.r, i); // for opening we store the id
13 events.emplace_back(t.y + t.r, ~i); // for closing we store its two's complement (-id-1)
14 }
15 sort(events.begin(), events.end());

Next up we prepare the scanline by setting up all required variables: scanline_y, the current
H position of the scanline, s, the data structure containing all half circles and par, where we store
the parent of a terrace.

1 int scanline_y = -3e9;
2 set<halfcircle, scanline_cmp> s(scanline_cmp{&scanline_y});
3 vector<int> par(n, -2); // -2 is the first invalid value (as -1 denotes no parent)
4

5 // compute the parent based on the iterator and its neighbors
6 auto get_par = [&](set<halfcircle, scanline_cmp>::iterator it) { /* shown later */ };
7

8 // add sentinels so prev(it) and next(it) are always valid
9 s.insert(halfcircle{0, 0, -1, -1, -1});

10 s.insert(halfcircle{0, 0, -1, -1, 1});

We also defined get_par, a function that computes the parent based on an iterator into the set.
We show this function last.

Next to the scanline: we loop over all events, and either insert or remove the two half circles. If
we insert them, we also set the parent using the get_par function.

1 for (auto [ev_y, id] : events) {
2 scanline_y = ev_y;
3

4 if (id >= 0) { // insert two new halfcircle
5 auto& t = ts[id];
6 auto [it, _] = s.insert(halfcircle{t.x, t.y, t.r, id, -1});
7 par[id] = get_par(it);
8 assert(par[id] != -2);
9 s.insert(halfcircle{t.x, t.y, t.r, id, 1});

10 } else { // remove two halfcircles
11 id = ~id;
12 auto& t = ts[id];
13 auto it = s.find(halfcircle{t.x, t.y, t.r, id, -1});
14 assert(it != s.end());
15 it = s.erase(it); // erase returns an iterator to the next element
16 assert(it->id == id); // it now points to the corresponding halfcircle, so it has the same id
17 s.erase(it);
18 }
19 }

The only thing that is missing now is how to compute the parent. For that we exploit the
property of an std::set which ensures that its elements are sorted in increasing order of the

28/41

First Round, 2020/2021
Task changifalls

given comparator. Thus if we look at prev(it) and next(it)we can see the half circles to the
left and to the right of the freshly inserted halfcircle. This allows us to do the following case
distinction to determine the parent:

1 // compute the parent based on the iterator and its neighbors
2 auto get_par = [&](set<halfcircle, scanline_cmp>::iterator it) {
3 auto& l = *prev(it); // the halfcircle to the left
4 auto& r = *next(it); // the halfcircle to the right
5 // we know both iterators are valid since we have added the two sentinels
6

7 if (l.dir == -1 && r.dir == 1) { // case (x) -> found the parent
8 assert(l.id == r.id);
9 return l.id;

10 }
11 if (l.dir == -1) { // case (x (-> left one is parent
12 assert(par[r.id] == l.id);
13 return l.id;
14 }
15 if (r.dir == 1) { // case) x) -> right one is parent
16 assert(par[l.id] == r.id);
17 return r.id;
18 }
19 // case) x (-> parent of either one is parent
20 assert(par[l.id] == par[r.id]);
21 return par[l.id];
22 };

And that’s it! The only stuff remaining is computing the hash and writing the output.
The running time is dominated by the std::set: we insert at most O(=) values and call find

at most O(=) times. Thus our total running time is O(= log =). For reference, the full code for
subtask 4:
1 #include <bits/stdc++.h>
2 using namespace std;
3 #define int int64_t
4

5 // shape of '(' or ')'
6 struct halfcircle {
7 int x0, y0, r, id;
8 int dir; // +1 for upper half, -1 for lower half
9

10 // get the x coordinate of the halfcircle at position y
11 double x_at_y(double y) const {
12 assert(y0 - r <= y && y <= y0 + r);
13 int cy = y - y0;
14 return x0 + dir*sqrt(r*r - cy*cy);
15 }
16 };
17

18 // comparison operator used in the std::set of this scanline
19 // the y member can be updated dynamically
20 struct scanline_cmp {
21 scanline_cmp(int *y) : y(y) {}
22 int *y;
23

24 bool operator()(halfcircle const& a, halfcircle const& b) const {
25 // sentinel: with id==-1, dir=-1 always smaller, dir=+1 always larger
26 if (a.id == -1 && b.id == -1) return a.dir < b.dir;
27 if (a.id == -1) return a.dir == -1;
28 if (b.id == -1) return b.dir != -1;
29

30 // tie breaker for left-most and right-most points of the same circle
31 if (tie(a.x0, a.y0, a.r) == tie(b.x0, b.y0, b.r))
32 return a.dir < b.dir;
33

34 // otherwise the task guarantees no intersections
35 assert(a.x_at_y(*y) != b.x_at_y(*y));

29/41

First Round, 2020/2021
Task changifalls

36 return a.x_at_y(*y) < b.x_at_y(*y);
37 }
38 };
39

40 struct terrace { int x, y, r, h; };
41

42 int solve_sub4() {
43 int n; cin >> n;
44 vector<terrace> ts;
45 vector<pair<int, int>> events;
46 for (int i=0; i<n; ++i) {
47 terrace t;
48 cin >> t.x >> t.y >> t.r >> t.h;
49 ts.push_back(t);
50 assert(t.r > 0);
51 events.emplace_back(t.y - t.r, i); // for opening we store the id
52 events.emplace_back(t.y + t.r, ~i); // for closing we store its two's complement (-id-1)
53 }
54 sort(events.begin(), events.end());
55

56 int scanline_y = -3e9;
57 set<halfcircle, scanline_cmp> s(scanline_cmp{&scanline_y});
58 vector<int> par(n, -2); // -2 is the first invalid value (as -1 denotes no parent)
59

60 // compute the parent based on the iterator and its neighbors
61 auto get_par = [&](set<halfcircle, scanline_cmp>::iterator it) {
62 auto& l = *prev(it); // the halfcircle to the left
63 auto& r = *next(it); // the halfcircle to the right
64 // we know both iterators are valid since we have added the two sentinels
65

66 if (l.dir == -1 && r.dir == 1) { // case (x) -> found the parent
67 assert(l.id == r.id);
68 return l.id;
69 }
70 if (l.dir == -1) { // case (x (-> left one is parent
71 assert(par[r.id] == l.id);
72 return l.id;
73 }
74 if (r.dir == 1) { // case) x) -> right one is parent
75 assert(par[l.id] == r.id);
76 return r.id;
77 }
78 // case) x (-> parent of either one is parent
79 assert(par[l.id] == par[r.id]);
80 return par[l.id];
81 };
82

83 // add sentinels so prev(it) and next(it) are always valid
84 s.insert(halfcircle{0, 0, -1, -1, -1});
85 s.insert(halfcircle{0, 0, -1, -1, 1});
86

87 for (auto [ev_y, id] : events) {
88 scanline_y = ev_y;
89

90 if (id >= 0) { // insert two new halfcircle
91 auto& t = ts[id];
92 auto [it, _] = s.insert(halfcircle{t.x, t.y, t.r, id, -1});
93 par[id] = get_par(it);
94 assert(par[id] != -2);
95 s.insert(halfcircle{t.x, t.y, t.r, id, 1});
96 } else { // remove two halfcircles
97 id = ~id;
98 auto& t = ts[id];
99 auto it = s.find(halfcircle{t.x, t.y, t.r, id, -1});

100 assert(it != s.end());
101 it = s.erase(it);
102 assert(it->id == id); // both halfcircles must be adjacent now
103 s.erase(it);

30/41

First Round, 2020/2021
Task changifalls

104 }
105 }
106

107 const uint64_t a = 1000003;
108 const uint64_t mod = 1000000007;
109 uint64_t ans = 0;
110 uint64_t ai = 1;
111 for (auto p : par) {
112 ans = (ans + ai*(p + 2))%mod;
113 ai = ai*a % mod;
114 }
115 return ans;
116 }
117

118 signed main() {
119 int t; cin >> t;
120 for (int i=0; i<t; ++i)
121 cout << "Case #" << i << ": " << solve_sub4() << '\n' << flush;
122 }

Subtask 5: Giant Jewel Changi (25 points)
The last subtask could be solved with a lot of different techniques: With centroid decomposition
in O(= log =) (which both solution we received make use of) or using smaller to larger with either
std::set, fenwick trees or persistent queues.
We now explain the solution using centroid decomposition as it is the shortest solution.

Best solution containing vertex v
let’s say we know that we are just interested in the best solution containing vertex E (i.e. some
path with maximal difference, where the path contains E). Looking at the graph rooted in vertex
E, we notice that some edges can be labelled as increasing and some as decreasing.

Focusing on just the increasing edges, we now want to compute the largest vertex at distance 8
for each 8 from 0 to !. We can do this by running a DFS from E and keeping track of the current
distance:

1 void compute_increasing_paths(int v, int d) {
2 if (d == L) return; // stop at distance L
3 largest_at_dist[d] = max(largest_at_dist[d], height[v]);
4 for (auto w : increasing_children[v])
5 if (height[v] < height[w]) // if this is an increasing edge
6 compute_increasing_paths(w, d+1);
7 }

The result of this DFS is the vector largest_at_dist.
We can do the same for the decreasing edges.
Now if we want the best solution containing vertex E we can just compute the maximum of

largest_at_dist[i] + largest_at_dist[L-i] over all 8.
Thus we can compute the best solution containing vertex E in O(=) runing time.

Iteratively picking Centroids
Why is that useful? We can pick some vertex E and compute the best solution containing E using
the algorithm above. Then we can remove E from the tree and end up with a smaller tree. We
can then proceed doing the same on the smaller trees: pick some vertex E′, compute the best
solution containing E′ and then remove E′. And so on until no more vertices remain.

This may remind you of the idea of divide and conquer: given an array, we compute something
and then split the array into two halves. Then we solve each half recursively. One example of
that would be quicksort: we pick some value E, put all smaller values on the left and all larger
values to the right, and then sort each side recursively. It turns out quicksort would be O(= log =)
assuming we could always find some value that would split the array exactly into two halves.

31/41

First Round, 2020/2021
Task changifalls

We now do a similar thing on the tree on vertices: we try find a central vertex such that the
resulting tree is split into a new trees such that no tree has more than half of the vertices. Such a
vertex is called a centroid and there is a theorem that each tree has at least one centroid.

Now if we iteratively find a centroid and remove it, and each iteration takes O(<tree size>)
time, our resulting algorithm runs in O(= log =).
You can read more about centroid decomposition here: https://tanujkhattar.wordpress.

com/2016/01/10/centroid-decomposition-of-a-tree/
An good implementation of centroid decomposition can be looked at here: https://

codeforces.com/blog/entry/58025

Implementation
The code below is exactly doing that:

• we mark removed vertices by setting a flag in “vector<bool> dead”.
• compute_size uses DFS to compute subtree sizes is a helper function for finding centroids.
• find_centroid finds a centroid of some component ignoring all dead vertices.
• compute_paths is conceptually the same function as compute_increasing_paths, however

it takes a comparison function as argument so it works for both increasing and decreasing
paths. It takes index � (either 0 for increasing or 1 for decreasing) and stores the result in
the vector q[I].

• centroid_decomposition is the main function for solving the task. It takes a vertex E,
finds a centroid in the component of E, computes the paths and combines them.
It is important that combining them runs in O(<tree size>) and not O(!); for that the
compute_increasing_paths returns the maximal depth found and we take care that the
rest of the code only runs in O(30 + 31).

• solve_sub5 is the driver function that reads the input, resets the global variables and calls
centroid_decomposition in each component.

1 #include <bits/stdc++.h>
2 using namespace std;
3 #define int int64_t
4

5 int N, L;
6 vector<vector<int>> g;
7 vector<int> h;
8

9 vector<bool> dead;
10 vector<int> subtree_size;
11 const int INF = 2e18;
12 array<vector<int>, 2> q;
13

14 int compute_size(int v, int p) {
15 subtree_size[v] = 1;
16 for (auto w : g[v])
17 if (w != p && !dead[w])
18 subtree_size[v] += compute_size(w, v);
19 return subtree_size[v];
20 }
21

22 // returns (heaviest child, vertex); assumes subtree_size is set correctly
23 pair<int, int> find_centroid(int v, int p, int total_size) {
24 int heaviest_child = total_size - subtree_size[v];
25 pair<int, int> best{total_size, v};
26 for (auto w : g[v]) {
27 if (w != p && !dead[w]) {
28 best = min(best, find_centroid(w, v, total_size));
29 heaviest_child = std::max(heaviest_child, subtree_size[w]);
30 }
31 }

32/41

https://tanujkhattar.wordpress.com/2016/01/10/centroid-decomposition-of-a-tree/
https://tanujkhattar.wordpress.com/2016/01/10/centroid-decomposition-of-a-tree/
https://codeforces.com/blog/entry/58025
https://codeforces.com/blog/entry/58025

First Round, 2020/2021
Task changifalls

32 return min(best, {heaviest_child, v});
33 }
34

35 template <size_t I, typename Comparator>
36 int compute_paths(int v, int p, int d, Comparator comp={}) {
37 if (d == L) return -1;
38 q[I][d] = max(q[I][d], h[v], comp);
39 int maxd = d;
40 for (auto w : g[v])
41 if (w != p && !dead[w] && comp(h[v], h[w]))
42 maxd = max(maxd, compute_paths<I>(w, v, d+1, comp));
43 return maxd;
44 }
45

46 int centroid_decomposition(int v) {
47 int c = find_centroid(v, -1, compute_size(v, -1)).second;
48

49 int d0 = compute_paths<0>(c, -1, 0, less<int>{});
50 int d1 = compute_paths<1>(c, -1, 0, greater<int>{});
51 // compute prefix minimum/maximum
52 for (int i = 1; i <= d0; ++i) q[0][i] = max(q[0][i], q[0][i-1]); // not necessary
53 for (int i = 1; i <= d1; ++i) q[1][i] = min(q[1][i], q[1][i-1]);
54

55 // combine the paths
56 int ans = 0;
57 for (int i = 0; i <= d0; ++i)
58 ans = max(ans, q[0][i] - q[1][min(d1, L - i - 1)]);
59

60 // reset q[0] and q[1]
61 fill(q[0].begin(), q[0].begin()+d0+1, 0); // reset q0
62 fill(q[1].begin(), q[1].begin()+d1+1, INF); // reset q1
63

64 // mark c as dead and recurse
65 dead[c] = true;
66 for (auto w : g[c]) // solve each subtree
67 if (!dead[w])
68 ans = max(ans, centroid_decomposition(w));
69

70 return ans;
71 }
72

73 int solve_sub5() {
74 // reset global variables
75 cin >> N >> L;
76 g.assign(N, {});
77 h.clear();
78 h.reserve(N);
79

80 // read input
81 vector<int> roots;
82 for (int i=0; i < N; ++i) {
83 int _, h_, p;
84 cin >> _ >> _ >> _ >> h_ >> p;
85 h.push_back(h_);
86 if (p != -1) {
87 g[i].push_back(p);
88 g[p].push_back(i);
89 }
90 }
91

92 int n = g.size();
93 subtree_size.assign(n, 0);
94 dead.assign(n, false);
95 q[0].assign(n, 0);
96 q[1].assign(n, INF);
97

98 int ans = 0;
99 for (int i=0; i<N; ++i)

33/41

First Round, 2020/2021
Task changifalls

100 if (!dead[i])
101 ans = max(ans, centroid_decomposition(i));
102 return ans;
103 }
104

105 signed main() {
106 int t; cin >> t;
107 for (int i=0; i<t; ++i)
108 cout << "Case #" << i << ": " << solve_sub5() << '\n' << flush;
109 }

The running time of this code is O(= log =).

34/41

First Round, 2020/2021
Task satay

Satay
Task Idea Bibin Muttappillil
Task Preparation Daniel Rutschmann
Description English Daniel Rutschmann
Description German Jan Schär
Description French Florian Gatignon
Solution Daniel Rutschmann
Correction Daniel Rutschmann

In this task # mice are standing next to each other, forming a tree. To goal is to get all skewers
and plates to a single mouse. We may only move skewers or plates along edges of the tree and
we may not move plates to a mouse that is holding skewers or move plates without the skewers
on top of them.

Subtask 1: Just Skewers (10 points)
In this subtask, we’re only dealing with skewers. Note that the risk of moving two skewers at
once is the same as moving them separately. Hence, we may assume that only one skewer is
moved at a time. Then our goal is to minimize the number of moves each skewer does.
If we fix the mouse that will end up with all the skewers, then it is clearly optimal to move

every skewer along the unique shortest path to this mouse. The length of all these paths can be
computed by a single BFS starting from the fixed mouse. This way, we can compute the minimal
total risk needed to pass all skewers to this mouse in O(#) time. We do this for every mouse and
take the least risky one. The total running time is O(#2).

Subtask 2: Everything to Stofl (20 points)
Nowwe’re also dealing with plates, but we knowwhich mouse they should end up at. By playing
around with some examples, you might figure out that we can always move the plates along the
unique shortest path to Stofl and that all skewers except one need to take a small detour, so you
might conjecture that the minimal total risk is � · ((+ %) + 2(= − 1) · (where � is the sum of
distances from all mice to Stofl. This is indeed the case and we’ll prove this is Subtask 4.
As in Subtask 1, we can compute � in O(#) time with a single BFS starting from Stofl, so the

total running time is O(#).

1 #include <bits/stdc++.h>
2 using namespace std;
3 using ll = int64_t;
4

5 ll get_total_dist(const int n, vector<vector<int> > const& g, int root){
6 vector<int> dist(n, -1);
7 queue<int> q;
8 auto cand = [&](int i, int d){
9 if(dist[i] == -1){

10 dist[i] = d;
11 q.push(i);
12 }
13 };
14 cand(root, 0);
15 while(!q.empty()){
16 int u = q.front();
17 q.pop();
18 for(auto &e:g[u]){
19 cand(e, dist[u]+1);
20 }
21 }
22 return accumulate(dist.begin(), dist.end(), 0ll);

35/41

First Round, 2020/2021
Task satay

23 }
24 void solve(){
25 int n, S, P;
26 cin >> n >> S >> P;
27 vector<int> a(n-1), b(n-1);
28 for(auto &e:a) cin >> e;
29 for(auto &e:b) cin >> e;
30 vector<vector<int> > g(n);
31 for(int i=0; i<n-1; ++i){
32 g[a[i]].push_back(b[i]);
33 g[b[i]].push_back(a[i]);
34 }
35 ll d = get_total_dist(n, g, 0);
36 ll ret = d*(S+P) + 2*S*(ll)(n-1);
37 cout << ret << "\n";
38 }
39 int main()
40 {
41 int TTT; cin >> TTT;
42 for(int cas = 0;cas<TTT;++cas){
43 cout << "Case #" << cas << ": ";
44 solve();
45 }
46 return 0;
47 }

Subtask 3: Skewers and plates without Stofl (10 points)
In this subtask, we no longer know which mouse the skewers and plates have to end up at. As in
Subtask 2, the minimal total risk for getting everything to mouse D is �[D] · ((+ %) + 2(= − 1) · (
where �[D] is the sum of distances from all mice to mouse D. We would like to compute this for
every mouse and then pick the least risky one. Unfortunately, running a BFS starting from every
mouse runs in Θ(#2) time in total, which is too slow. We hence need a faster way of computing
�[D] for every mouse D.

This can be done by doing dynamic programming over all (directed) edges with prefix sums at
every mouse, but there is an easier solution: Suppose the mice D and E are connected by an edge.
Let � be the set of mice on the D-side of this edge and let � be the set of mice on the E-side of this
edge. Every mouse in � needs to take one more step to get to E instead of D and every mouse in
� needs to take one less step to get to E instead of D. Therefore, we have

�[E] = �[D] + |�| − |�| = �[D] + = − 2 · |�|

This leads to a faster solution: Root the tree arbitrarily and compute �[root] in O(#) time. Run a
DFS to compute subtree sizes. This gives us |�| for the edge from every mouse E to its parent.
Finally, run a second DFS to compute �[E] for all mice E. The total running time is O(#), hence
the memory usage is also O(#).

1 #include <bits/stdc++.h>
2 using namespace std;
3 using ll = int64_t;
4

5 int n;
6 vector<vector<int> > g;
7 vector<int> subsize;
8 vector<ll> dist;
9

10 void dfs(int u, int p){
11 subsize[u] = 1;
12 for(auto const&e:g[u]) if(e != p){
13 dfs(e, u);
14 subsize[u] += subsize[e];
15 }
16 }
17 void dfs_2(int u, int p){

36/41

First Round, 2020/2021
Task satay

18 for(auto const&e:g[u]) if (e != p){
19 dist[e] = dist[u] + n - 2*subsize[e];
20 dfs_2(e, u);
21 }
22 }
23 void solve(){
24 int S, P;
25 cin >> n >> S >> P;
26 vector<int> a(n-1), b(n-1);
27 for(auto &e:a) cin >> e;
28 for(auto &e:b) cin >> e;
29 g.assign(n, vector<int>());
30 subsize.assign(n, 0);
31 dist.assign(n, 0);
32

33 for(int i=0; i<n-1; ++i){
34 g[a[i]].push_back(b[i]);
35 g[b[i]].push_back(a[i]);
36 }
37 dfs(0, -1);
38 dist[0] = accumulate(subsize.begin(), subsize.end(), 0ll) - n;
39 dfs_2(0, -1);
40 ll d = *min_element(dist.begin(), dist.end());
41 ll ret = d*(S+P) + 2*S*(ll)(n-1);
42 cout << ret << "\n";
43 }
44 int main()
45 {
46 int TTT; cin >> TTT;
47 for(int cas = 0;cas<TTT;++cas){
48 cout << "Case #" << cas << ": ";
49 solve();
50 }
51 return 0;
52 }

Subtask 4: Subtask 4: More Skewers and Plates (50 points)
We’ll now show that the minimal risk to get everything to mouse D is given by �[D] · ((+ %) +
2(= − 1) · (where �[D] is the sum of distances from all mice to mouse D. From this it easily
follows that our solution for Subtasks 2 and 3 is correct.
First, note that the risk (· G + % · H is linear. Therefore, we can compute the total risk by

summing up the contribution of every single skewer and plate. If a skewer is moved I times,
then it contributes (· I units of risk.

Feasibility
The following strategy achieves a total risk of �[D] · ((+ %) + 2(= − 1) · (.

1. Pick an arbitrary skewer at a leaf different from D and color the skewer and plate at this
leaf green. Such a leaf always exists as any tree with # ≥ 2 vertices has at least two leaves.

2. Move all other skewers on direct paths of D.
3. Move all non-green plates on direct paths to neighbors of D.
4. Move the green plate and skewer on a direct path to the closest neighbor of D.
5. Move all skewers onto the green plate.
6. Move all non-green plates to D.
7. Move all skewers with the green plate to D.

It is easy to see that this is a valid strategy: We can always move just skewers, we never move
plates to mouse that is holding skewers and we always move plates together with all skewer
currently on top of them.

37/41

First Round, 2020/2021
Task satay

In this strategy, every plate moves along the direct path to D, so the total risk contribution
from plates of �[D] · %. The skewers also move along direct paths to D, but every non green
skewer takes two extra steps to move onto the green plate and back to D. Hence the total risk
contribution from skewers is �[D] · (+ 2(= − 1) · (.

Optimality
We’ll now show that any strategy to get everything to mouse D has a total risk of at least
�[D] · ((+ %) + 2(= − 1) · (. Clearly, a single plate can’t contribute less risk than % times the
distance to D, so the plates contribute at least �[D] · % risk, Similarly, the skewers contribute
at least �[D] · (risk. Moreover, every skewer that takes a detour, i.e. that doesn’t just move
along the shortest path to D, contributes an additional 2% risk: As trees are bipartite, any detour
involves at least two extra steps. Thus, it suffices to show that there is at most one skewer that
doesn’t take a detour.
Let’s color all skewers that don’t take a detour green. Consider an arbitrary green skewer. If

this skewer is ever moved away from its plate, then it will always be closer to D than the plate. As
we can’t move the plate to the skewer, this makes it impossible to get the skewer and plate to the
same mouse. This contradicts the fact that all plates and skewers end up at D. Therefore, a green
skewer may never move away from its plate.
Now suppose there are two (or more) green skewers. As green skewers may only be moved

with their plates, it is impossible to move one green skewer to the mouse that is holding the other
one. Thus, every mouse can hold at most one green skewer at a time, which again contradicts the
fact that all plates and skewers end up at D. This shows that there is at most 1 green skewer, so at
least (− 1 skewers take a detour.

38/41

First Round, 2020/2021
Task muffins

Muffins
Task Idea Fabian Lyck
Task Preparation Fabian Lyck
Description English Fabian Lyck
Description German Fabian Lyck
Description French Florian Gatignon
Solution Fabian Lyck
Correction Fabian Lyck

Subtask 1: Greedy (25 points)
This subtask greatly simplifies the problem by posing some important constraints:

1. We have to bake all muffins. Thus there’s no need to select a subset of orders to fulfill.
2. There will only be one order. This means, we can fetch all of the necessary dough, lemons

and chocolate at the beginning in one go. This will be optimal, since returning to any of
these stations multiple times incurs an additional switching time cost.

3. The number of cups is an integer multiple of the bowl capacity. It is optimal to repeat the
cycle of bowl filling, mixing and cup filling until all cups are filled. Since it is an integer
multiple, we can always fill the bowl fully. This maximizes the efficiency of mixing.

Taking these steps, we find the greedy solution consisting of gathering all ingredients and then
repeating a baking cycle until all orders are fulfilled. During each baking cycle, we make sure to
fill all of the cups to maximize baking efficiency. Only in the last cycle do we fill the cups partially.
Since we always have to fill the bowls with an even amount of ingredients before mixing, we
have to round up the ordered muffins to the next even number. When filling cups, it suffices
to only fill the ordered number of cups and leave some dough in the bowl. Lastly, we should
always wait until the oven has finished baking before trying to bake more muffins.

1 uint32_t oven_done = 0;
2 void mouse_baking_muffins(const Mouse& mouse, const Storages& old_storages,
3 uint32_t finish_tick) {
4 oven_done = finish_tick + contexts.baking.baking_time;
5 }
6

7 void make_muffins() {
8 uint32_t muffin_type = orders[0].muffin_type;
9 uint32_t amt_muffins = orders[0].amount;

10 uint32_t half_muffins = (amt_muffins + 1) / 2;
11 go_to(contexts.dough); // go to dough storage
12 for (uint32_t i = 0; i < (half_muffins + contexts.dough.max_amount - 1) /
13 contexts.dough.max_amount; i++) {
14 get_dough();
15 }
16 if (muffin_type == 1) {
17 go_to(contexts.chocolate); // go to chocolate storage
18 for (uint32_t i = 0; i < (half_muffins + contexts.chocolate.max_amount - 1) /
19 contexts.chocolate.max_amount; i++) {
20 get_chocolate();
21 }
22 } else {
23 go_to(contexts.lemons); // go to lemon storage
24 for (uint32_t i = 0; i < (half_muffins + contexts.lemons.max_amount - 1) /
25 contexts.lemons.max_amount; i++) {
26 get_lemons();
27 }
28 }
29 uint32_t dough_made = 0;
30 uint32_t cups_filled = 0;

39/41

First Round, 2020/2021
Task muffins

31 while (dough_made < amt_muffins) {
32 for (uint32_t i = 0; i < storages.max_cups /
33 (storages.bowls[0].capacity * storages.bowls.size()); i++) {
34 go_to(contexts.bowl_filling); // go to bowl filling station
35 for (const Bowl& bowl : storages.bowls) {
36 while (dough_made < amt_muffins and bowl.amount < bowl.capacity) {
37 fill_bowl(bowl, muffin_type);
38 dough_made += 2;
39 }
40 }
41 go_to(contexts.mixing); // go to bowl mixing station
42 for (const Bowl& bowl : storages.bowls) {
43 if (bowl.amount > 0) {
44 mix_bowl(bowl);
45 }
46 }
47 go_to(contexts.cup_filling); // go to cup filling station
48 for (const Bowl& bowl : storages.bowls) {
49 while (bowl.amount > 0 and storages.cups[muffin_type] < storages.max_cups and
50 cups_filled < amt_muffins) {
51 fill_cups(bowl);
52 cups_filled ++;
53 }
54 }
55 if (dough_made >= amt_muffins) break;
56 }
57 go_to(contexts.baking); // go to oven
58 idle(oven_done);
59 bake_muffins();
60 }
61 idle();
62 }

Subtask 2: Optimization (25 points)
This subtask poses some tricky optimization problems. The only constraint was that there would
be only one mouse and that the test data would always be the same. This allows manually
analyzing and writing a solution tailored to the test data. There are many ways to approach this
task. One idea would be to simulate the game and implement some different greedy strategies,
then one could evaluate the score of each strategy in dynamic programming fashion to combine
them into a solution.
Each of the seven test cases evaluates a different aspect of the bot. The first two cases each

offer twice as many orders as Stofl can fulfill. By choosing the larger orders, more points can be
scored. Since the mixing time is very long and the bowls are large, it is also necessary to mix all
ingredients at the beginning. The third case requires Stofl to process two orders at the same time.
There are two bowls and both muffin types have to be prepared and filled into cups in one go.
The fourth case is the same, except that the number of bowls is reduced to one. So the dough
has to be prepared one type after another, but both types of muffins still have to be baked at the
same time. The fifth case simply consists of many small two-muffin orders that all have to be
prepared from start to finish as they come in. The sixth case tests the ability to fill and mix all of
the necessary dough in advance, to then fulfill orders of both muffin types as they come in. Two
large bowls are provided, so all the necessary dough can be stored there. The seventh case is the
same, except that there are more, smaller bowls. Thus it is necessary to correctly split up the
dough among different bowls, so that still all of the dough can be prepared in advance.

Subtask 3: Creativity Tourney (50 points)
The idea of this subtask would’ve been to have a competition between different submissions.
Where each submission would’ve been paired up with a mouse controlled by a different
submission. The goal would be to bake as many muffins as possible, cooperating as well as
possible with the other mouse. The strategies from subtask 2 should still be applicable, but

40/41

First Round, 2020/2021
Task muffins

many more checks are necessary to ensure that the two mice don’t interfere with each other.
Unfortunately there was only one submission, so the creativity tourney did not take place.

41/41

	Stairracing
	N=1
	N=2
	N103
	N105

	Secret Code
	Two Letters (25 Points)
	Lots of Letters (25 Points)
	Two Mice (25 Points)
	Lots of Mice (25 Points)

	Bamboo
	Three Bamboos (15 points)
	Two Heights (25 points)
	Small Forest (25 points)
	Large Forest (35 points)

	Battery Fix
	Observation: Overlapping
	Subtask 2: Small Battery (10 points)
	Observation: Maximum Power
	Observation: Reduction to a Binary Problem
	Subtask 1: Ordered (10 points)
	Observation: Good Wires
	Subtask 3: Medium Battery (10 points)
	Subtask 4 (Theoretical): Future Developments
	O(N) / O(N) (40 points)
	O(N log(N)) / O(log(N)) (60 points)
	O(N log(N)) / O(1) (70 points)

	Lily Pads
	Changi Falls
	Concentric Circles (15 points)
	Flowing Inwards (15 points)
	Jewel Changi (20 points)
	Prepping for a Giant Jewel Changi (25 points)
	Giant Jewel Changi (25 points)

	Satay
	Just Skewers (10 points)
	Everything to Stofl (20 points)
	Skewers and plates without Stofl (10 points)
	Subtask 4: More Skewers and Plates (50 points)

	Muffins
	Greedy (25 points)
	Optimization (25 points)
	Creativity Tourney (50 points)

