
SOI Workshops 2019

Solution Booklet

Swiss Olympiad in Informatics

November 2019

SOI Workshops 2019
Task greprcpp

Graph Representation
If we want to work with graphs, we need a way to store them in an efficient way. Most of the
time, adjacency lists are the most practical representation as they allow us to quickly loop over
all of the neighbours of a certain vertex. One of the other advantages of an adjacency list – in
comparison to an adjacency matrix – is, that it only stores the neighbours of a vertex and not a
value for each combination of two vertices, so we can run DFS and BFS in O(= + <) instead of
O(=2) (of the adjacency matrix). Also it only needs O(= + <)memory (instead of O(=2)).
In most of the tasks, graphs are given by two numbers = and <, the number of vertices and the

number of edges, followed by < lines with two numbers 0 and 1, each representing an edge from
0 to 1. To read it into an adjacency list, just push 0 back on the list of 1, and vice versa. The code
looks like this:

1 #include <soi>
2

3 signed main()
4 {
5 int n = read_int(); // The number of vertices
6 int m = read_int(); // The number of edges
7

8 vector<vector<int>> graph(n); // Our adjacency list
9

10 for (int i = 0; i < m; i++) // For each edge
11 {
12 int from = read_int(); // Read the first vertex
13 int to = read_int(); // Read the second vertex
14 graph[from].push_back(to); // Push a to b so we can go from a to b.
15 graph[to].push_back(from); // Push b to a so we can go from b to a.
16 }
17

18 for (int i = 0; i < n; i++) {
19 print(graph[i]); // Print the adjacency list.
20 }
21 }

2/20

SOI Workshops 2019
Task starclassify

Stars in the Sky
Given a graph, we should find out if it’s a star. There are many approaches which try to group
the vertices into center and not-center, but the code often gets uglier than it should be. In fact,
the solution of this problem is rather short. The first observation one needs to make, is that a
star consisting of = vertices has exactly = − 1 vertices: for each vertex except for the one in the
center, there has to be a connection to the one in the center. This condition is necessary, but not
yet sufficient (look at a path).

The second condition for our graph is, that it has to contain at least one vertex with degree
< = = − 1, namely the center. This doesn’t sound interesting yet, the only thing we did is
reformulating the problem. But in fact, these two conditions together are sufficient: If the degree
of a vertex is = − 1, then all of the other vertices have each one connection to the center-vertex.
And there can’t be any other edge which connects two of the non-center vertices, because each
edge starts at the center vertex (otherwise his degree would be less than <). So the only thing we
need to check is the number of edges, and if there exists a vertex with degree = − 1 = <.

The code looks like this:

1 #include <soi>
2

3 signed main()
4 {
5 int n = read_int(); // Number of vertices
6 int m = read_int(); // Number of edges
7

8 if (n - 1 != m) // Our graph has not the right number of edges
9 {

10 print("other");
11 return 0;
12 }
13

14 vector<vector<int>> graph(n);
15

16 for (int i = 0; i < m; i++) // Read the graph.
17 {
18 int from = read_int();
19 int to = read_int();
20 graph[from].push_back(to);
21 graph[to].push_back(from);
22 }
23

24 for (int i = 0; i < n; i++) // Loop over every vertex
25 {
26 if (graph[i].size() == m)
27 {
28 print("star"); // We found a vertex with degree m = n - 1
29 return 0;
30 }
31 }
32 print("other"); // We didn't find any vertex with degree m
33 }

3/20

SOI Workshops 2019
Task components

Components
The task was to count the number of components in a graph. We can do this by looping through
all vertices. If a vertex is unvisited, we found a new component! To "discover" all other vertices
and mark them as visited, we use a simple dfs which does nothing else than "visiting" vertices. If
we arrive at a vertex we have already visited, we just ignore it. In code:

1 #include <soi>
2

3 vector<vector<int>> graph;
4 vector<bool> visited;
5

6 void dfs(int curr) { // Simple dfs which only "visites vertices".
7 {
8 if (visited[curr]) return;
9 visited[curr] = true;

10

11 for (int next : graph[curr])
12 {
13 dfs(next);
14 }
15 }
16

17 signed main()
18 {
19 int n = read_int(); // Read the input
20 int m = read_int();
21

22 graph.resize(n);
23

24 for (int i = 0; i < m; i++)
25 {
26 int from = read_int();
27 int to = read_int();
28 graph[from].push_back(to);
29 graph[to].push_back(from);
30 }
31

32 visited.resize(n, false); // Initialize our visited-array
33

34 int cnt = 0;
35

36 for (int i = 0; i < n; i++) // Loop through the vertices
37 {
38 if (!visited[i])
39 {
40 cnt++; // We found a unvisited vertex!
41 dfs(i);
42 }
43 }
44

45 print(cnt);
46 }

4/20

SOI Workshops 2019
Task clawcrane

Clawcrane
In the task clawcrane, we want to maximize the sum of the values of the prizes we can get in a
single try, as some prizes clump together. If we choose to take the toy at vertex, we get all the
toys in the same component. So we can reformulate the problem a bit: find the maximal value
among the sums of the vertices in a component. Again, we can use dfs. Our dfs function returns
the sum of the values of the vertices we did visit, so after we visited all vertices in a component,
it returns the sum of the component. In total, we do this: We loop over all vertices. If we didn’t
visit a vertex, we use dfs to calculate the sum in the component of this vertex. If it is already
visited, just ignore it. During all this we store the current maximum in a variable. In code:

1 #include <soi>
2

3 vector<vector<int>> graph;
4 vector<int> visited;
5

6 vector<int> values;
7

8 int dfs(int curr) // Returns the sum of the vertices our dfs has already discovered.
9 {

10 if (visited[curr]) return 0; // We have been here already
11 visited[curr] = true;
12

13 int sum = values[curr]; // Add the value of this vertex to the result
14

15 for (int next: graph[curr])
16 {
17 sum += dfs(next); // Add the values from the dfs of the neighbours to the result
18 }
19

20 return sum;
21 }
22

23 signed main()
24 {
25 int n = read_int(); // Read input
26 int m = read_int();
27

28 values.resize(n);
29

30 for (int i = 0; i < n; i++)
31 {
32 int v = read_int();
33 values[i] = v;
34 }
35

36 graph.resize(n);
37

38 for (int i = 0; i < m; i++)
39 {
40 int from = read_int();
41 int to = read_int();
42 graph[from].push_back(to);
43 graph[to].push_back(from);
44 }
45

46 visited.resize(n, false);
47

48 int maxval = 0; // Our global variable with the maximum
49

50 for (int i = 0; i < n; i++)
51 {
52 if (visited[i]) continue;
53 maxval = max(maxval, dfs(i)); // Call dfs and update the maximum

5/20

SOI Workshops 2019
Task clawcrane

54 }
55

56 print(maxval);
57 }

6/20

SOI Workshops 2019
Task passports

Passports
The problem passports introduces the concept of vertex-coloring. In passports, we want to assign
one of the two passports to each of the nations such that we don’t assign the same passport to
two nations in conflict. To color a graph, we assign to each vertex a number ("color") such that no
two adjacent vertices have the same number. Here we just want to find a coloring of the graph
with 2 colors. Let’s look at a vertex E. As we didn’t assign any other color to the graph, we can –
without loss of generality – assign the color 0 to it. Then for each neighbour, we have to use the
value 1 (otherwise the two adjacent vertices have the same number). But each neighbour of a
vertex with number 1, must have the color 0, and so on. We can do this with a dfs: memorize the
current color, and when we call dfs for all the neighbours, we need to inverse the colors. If our
dfs arrives at a vertex which already has a color, if the color we want to assign to it and the color
it already has are the same, then we can just continue. But if these two colors are different, then
it’s impossible to assign the colors. The two different colors mark that we have found an odd
cycle, and to color an odd cycle with 2 colors is impossible. So we can just use dfs. As there may
be several components in the graph and dfs just goes through one of it, we again have to loop
through all the vertices and run dfs from each unvisited vertex.

1 #include <soi>
2

3 vector<vector<int>> graph;
4 // We can combine the visited and the color array to one array:
5 // -1 when not visited yet, otherwise the color
6 vector<int> color;
7

8 // Dfs taking the current color as the second argument.
9 // Returns true when it's possible, false when not

10 bool dfs(int curr, int col)
11 {
12 // If our new color is equal to the old, we can return true.
13 // If it's different, it's not possible so we return false
14 if (color[curr] != -1) return col == color[curr];
15 color[curr] = col; // Set the current color
16

17 for (int next : graph[curr])
18 {
19 // Use dfs on the next vertex with the other color.
20 // If it returns false, we also return false
21 if (!dfs(next, !col)) return false;
22 }
23 return true; // Nothing returned false, so we can return true
24 }
25

26 signed main()
27 {
28 int n = read_int(); // Read input
29 int m = read_int();
30

31 graph.resize(n);
32

33 for (int i = 0; i < m; i++)
34 {
35 int from = read_int();
36 int to = read_int();
37 graph[from].push_back(to);
38 graph[to].push_back(from);
39 }
40

41 color.resize(n, -1);
42

43 bool possible = true;
44

7/20

SOI Workshops 2019
Task passports

45 for (int i = 0; i < n; i++) // Loop through all the vertices
46 {
47 if (color[i] != -1) continue; // if (visited[i]) continue;
48

49 if (!dfs(i, 0))
50 {
51 possible = false; // It's not possible
52 break;
53 }
54 }
55

56 if (possible)
57 {
58 vector<vector<int>> groups(2); // The two groups
59 for (int i = 0; i < n; i++)
60 {
61 groups[color[i]].push_back(i); // Add each vertex to his group
62 }
63 print(groups[0]); // Print the groups
64 print(groups[1]);
65 }
66 else
67 {
68 print("Order more passports."); // Not possible, we need more
69 }
70 }

8/20

SOI Workshops 2019
Task erasmus

Erasmus
The task of erasmus looks a bit strange at first. We have these talents and we don’t really know
what to do. In these tasks, it’s often useful to look at just a single talent, try to solve it for a single
talent, and then look at the solution of the whole problem. Sometimes we can just apply the same
algorithm for each "talent", sometimes we have to be more efficient and combine them.

We have one single talent and want to make our gang as big as possible. Let’s look at a mouse
which is not impressed. This mouse doesn’t join us, and it’s also not going to tell his friends
about this talent. This means, we could basically just remove every unimpressed mouse from
the graph. What we have left are the mice that are impressed and will join us, and tell all their
friends about us. If we look at the mice as a graph, we can see that every mouse in the same
component joins our gang. Again reformulating this a bit, we can see that we want to find the
component with the biggest size. We can do this with dfs in O(= + <). If we do this for each
talent, we get a running time of O(=C + <C), which fits into the limits! Our algorithm looks like
this: For each talent, remove all mice with a skill-level of this talent bigger than Stefl’s. Then
calculate the size of the biggest component using dfs. The result is the maximum of this for each
talent. We can do a bit better: Instead of removing the mice from the graph, we can just ignore
them when we "visit" them in our dfs. This makes the code much simpler.

1 #include <soi>
2

3 vector<vector<int>> graph;
4 vector<vector<int>> talents;
5

6 vector<bool> visited;
7

8 int dfs(int curr, int talent) // Dfs at vertex curr looking at talent t
9 {

10 if (visited[curr]) return 0; // We have been here before
11 visited[curr] = true;
12

13 // If this mouse has a bigger talent value than stefl, so we should ignore it, so we return 0
14 if (talents[0][talent] <= talents[curr][talent]) return 0;
15

16 int sum = 1;
17

18 for (int next : graph[curr])
19 {
20 sum += dfs(next, talent); // Calculate the component size
21 }
22 return sum;
23 }
24

25 signed main()
26 {
27 int n = read_int(); // Read Input
28 int m = read_int();
29 int t = read_int();
30

31 talents.resize(n, vector<int>(t));
32

33 for (int i = 0; i < n; i++)
34 {
35 for (int j = 0; j < t; j++)
36 {
37 int v = read_int();
38 talents[i][j] = v;
39 }
40 }
41

42 graph.resize(n);
43

9/20

SOI Workshops 2019
Task erasmus

44 for (int i = 0; i < m; i++)
45 {
46 int from = read_int();
47 int to = read_int();
48 graph[from].push_back(to);
49 graph[to].push_back(from);
50 }
51

52 int best = -1; // Biggest gang size
53 int btal = -1; // Talent with biggest gang size
54

55 for (int ctal = 0; ctal < t; ctal++)
56 {
57 visited.assign(n, false); // Reset all the visited flags
58 for (int i = 1; i < n; i++)
59 {
60 if (visited[i]) continue;
61 int nv = dfs(i, ctal); // Calculate the value
62 if (best < nv)
63 {
64 // Set the current maximum and the current talent
65 best = nv;
66 btal = ctal;
67 }
68 }
69 }
70

71 print(btal, best);
72 }

10/20

SOI Workshops 2019
Task shortestpath

Shortest Path
This task was about computing the shortest path from vertex 0 to vertex 1 in an unweighted
graph. Thus, we can directly apply BFS (Breath-First Search).
Below is a code that has BFS in its own function. The function takes as input a graph, and

returns the distance array to all vertices, relative to some source vertex start.

1 #include <soi>
2

3 vector<int> bfs(vector<vector<int>> const& graph, int start) {
4 vector<int> dist(graph.size(), -1); // -1 means unvisited
5 // dist[v] is the distance between start and v
6 queue<int> q; // BFS queue, the pending vertices
7

8 // first we set the distance, then we push it to the queue
9 dist[start] = 0;

10 q.push(start);
11

12 while (!q.empty()) {
13 int v = q.front();
14 q.pop();
15 for (auto w : graph[v]) {
16 if (dist[w] == -1) { // if unvisited:
17 // set the distance, then we push it to the queue
18 dist[w] = dist[v] + 1;
19 q.push(w);
20 }
21 }
22 }
23 // return the distance array
24 return dist;
25 }
26

27 signed main() {
28 int n = read_int();
29 int m = read_int();
30 vector<vector<int>> graph(n);
31 for (int i=0; i<m; ++i) {
32 int a = read_int();
33 int b = read_int();
34 graph[a].push_back(b);
35 graph[b].push_back(a);
36 }
37

38 int start = read_int();
39 int target = read_int();
40

41 auto dist = bfs(graph, start);
42 print(dist[target]);
43 }

11/20

SOI Workshops 2019
Task segmentdisplay

Seven-segment display
We are given a display where we can go from displaying number 0 to 0 + 1 mod 106 and
� · 0 mod 106 and have to find the minimum number of steps to reach number . starting from
number -.

The first step is to model this as a graph problem. We represent each number 8 from 0 to 106 − 1
as vertex 8. We draw an edge from 8 to 8 + 1 mod 106 and from 8 to � · 8 mod 106. Note that in
this case, the graph is directed. We can go from 0 to 0 + 1 but not vice versa. What this means is
that we only insert one direction when we build the graph. Then, the length of the shortest path
from - to . is exactly the minimum number of operations that we need to go from - to ..
We first construct the graph and the use exactly the same BFS function as before:

1 #include <soi>
2

3 vector<int> bfs(vector<vector<int>> const& graph, int start) {
4 vector<int> dist(graph.size(), -1);
5 queue<int> q;
6

7 dist[start] = 0;
8 q.push(start);
9

10 while (!q.empty()) {
11 int v = q.front();
12 q.pop();
13 for (auto w : graph[v]) {
14 if (dist[w] == -1) {
15 dist[w] = dist[v] + 1;
16 q.push(w);
17 }
18 }
19 }
20 return dist;
21 }
22

23 const int M = 1e6;
24 signed main() {
25 int c = read_int();
26 vector<vector<int>> graph(M);
27 for (int i=0; i<M; ++i) {
28 graph[i].push_back((i+1)%M);
29 graph[i].push_back((c*i)%M);
30 }
31

32 int start = read_int();
33 int target = read_int();
34

35 auto dist = bfs(graph, start);
36 print(dist[target]);
37 }

We define" = 106 using the line “const int M=1e6”. “const” means that we are not allowed
to change it in the program. This prevents us from acidentally changing “M” (which is usually a
bug). Also, it allows the compiler to perform some optimizations, and makes the code a bit faster.
“1e6” is a shorthand for 106.

Note that we don’t actually have to construct the graph ourselves. This is a case of an implicit
graph. We can just compute the neighbors on the fly:

1 #include <soi>
2

3 const int M = 1e6;
4

5 signed main() {

12/20

SOI Workshops 2019
Task segmentdisplay

6 int c = read_int();
7 int start = read_int();
8 int target = read_int();
9

10 vector<int> dist(M, -1);
11 queue<int> q;
12 dist[start] = 0;
13 q.push(start);
14

15 while (!q.empty()) {
16 int v = q.front();
17 q.pop();
18 for (auto w : {(v+1)%M, c*v%M}) {
19 if (dist[w] == -1) {
20 dist[w] = dist[v] + 1;
21 q.push(w);
22 }
23 }
24 }
25 print(dist[target]);
26 }

While both codes are O(") (which is actually just O(1) since " is a constant), the second code
is quite a bit faster since we don’t need to construct the whole graph.

13/20

SOI Workshops 2019
Task tiles

Tiles
We have to calculate the number of possibilities to fill a 3 ∗ = field with tiles of size 3 ∗ 1. Counting
stuff is a good indicator for dp, and if we look at the problem closer, we can see that we can
calculate the number of possibilities recursively! Let the number of possibilites to fill a 3 ∗ 8 field
be 3?8 . To continue our pattern, there are two possibilities: either we place one tile vertically
using only the next field, or 3 tiles horizontally, using the next 3 fields. Or looking from the other
direction, the number of possibilites for the 3 ∗ 8 field is equal to the number of possibilities for
the 3 ∗ (8 − 1) field (the last thing we placed was a vertical tile) plus the number of possibilities
of a 3 ∗ (8 − 3) field (we placed 3 horizontal tiles). We can write this as a recursion formula:
3?8 = 3?8−1 + 3?8 − 3. The base cases for this formula are 3?0 = 1 (there is exactly one possibility
for an emtpy field) and 3?8<0 = 0 (negative sizes are not allowed). This is everything we need:
we know how to split the problem up in subproblems (recursion formula), we know our base
cases, and we know which subproblem is the relevant subproblem. So let’s start coding!

1 #include <soi>
2

3 vector<int> table; // Memorize the values we know already
4 int d;
5

6 int dp(int i)
7 {
8 if (i == 0) return 1; // Base Cases
9 if (i < 0) return 0;

10 if (table[i] != -1) return table[i]; // We know this value already
11

12 return table[i] = dp(i - 1) + dp(i - d); // Calculate the value using the formula
13 }
14

15 signed main()
16 {
17 d = read_int();
18 int n = read_int();
19

20 if (d == 1) // Special case if d == 1: It doesn't matter how we arrange them, it's always the same
21 {
22 print(1);
23 return 0;
24 }
25

26 table.resize(n + 1, -1); // Resize the table. Important: REsize it to n + 1 as we query the n-th value
27 print(dp(n)); // Calculate the value
28 }

14/20

SOI Workshops 2019
Task trisumpath

Triangle Sum (with path)
Given a triangle of numbers, we had to find the way from the top to the bottom with the highest
sum. In total, there are 2= different paths from top to bottom, so testing each path is too slow.
The crucial observation one had to make in this task, was that if we know the best path from the
top to a number 0 in the triangle, then every best path to any other number 1 which contains 0
will take the best path to 0 and from there the best path to this 1. To see exactly what this means,
let’s look at a specific number in the triangle. There are only two possibilities of where we can
come from, the number above it to the left, and the number above it to the right. If we know the
sum of the best path to these two numbers, we can easily calculate the best path to our number:
We choose the maximum of these 2 paths and add the value of our number to it. And now this
really looks like dp: our problem depends on two smaller subproblems, namely the two numbers
above our number! Now, to calculate the maximal path, we start at the top, and for each row, we
calculate the best sum for each number. These values depend from the values above them, but
since we loop from top to bottom, we already now these values. To find the maximal path, we
just have to take the maximal value in the last row.
This is enough to solve the trisum problem, but in trisumpath, we also have to print the path

(print “L” if we go left or “R” if we go right for each row). It looks very easy to just memorize
for each number the best path to it and for each number copy the path of the correct “parent”
and append the direction we have chosen, but this is adds another factor of = to our running
time, which would make our code to slow. There are two solutions of how to do it, and which
one to choose really depends on the problem. The first option is to memorize a value for each
number in the triangle which tells us if we came from the left or from the right. In the end we
know which number is the end of the best path, so we can look there from which direction we
came, go to this number, look from where we cam to this number and so on, until we arrive at
the top. The other option is just to look at the parents, and look at which one our program has
chosen by recalculating it. I chose the second option here, but here, both work well.

1 #include <soi>
2

3 signed main()
4 {
5 vector<vector<int>> triangle;
6 vector<vector<int>> sums;
7

8 int n = read_int();
9

10 for (int i = 0; i < n; i++) // Initialize the vectors and read the input
11 {
12 sums.push_back(vector<int>(i + 1, -1));
13 triangle.push_back(vector<int>(i + 1, -1));
14

15 for (int j = 0; j <= i; j++)
16 {
17 triangle[i][j] = read_int();
18 }
19 }
20

21 for (int i = 0; i < n; i++) // Calculate our dp
22 {
23 for (int j = 0; j <= i; j++) // For each number in our triangle
24 {
25 int best = 0;
26 // We have to check wheter we are on the borders, the leftmost number has
27 // no left parent and the same for the rightmost
28 if (j < i) best = max(best, sums[i - 1][j]); // Come from the right
29 if (j > 0) best = max(best, sums[i - 1][j - 1]); // Come from the left
30

31 sums[i][j] = best + triangle[i][j]; // The best possibility
32 }

15/20

SOI Workshops 2019
Task trisumpath

33 }
34

35 int mval = -1; // Find the best value
36 int mind = -1; // Save the position of the best value so we can start to calculate the path from there
37

38 for (int i = 0; i < n; i++)
39 {
40 if (sums[n - 1][i] > mval)
41 {
42 mval = sums[n - 1][i];
43 mind = i;
44 }
45 }
46

47 print(mval); // Print the best value
48

49 string path = "";
50 int curr = mind;
51

52 for (int i = n - 1; i > 0; i--)
53 {
54 if (curr < i && sums[i][curr] == sums[i - 1][curr] + triangle[i][curr]) // Check if we came from the right
55 {
56 path.push_back('L'); // If we came from the right, we chose left there to get here.
57 }
58 else
59 {
60 path.push_back('R');
61 curr--;
62 }
63 }
64

65 reverse(path.begin(), path.end()); // Reverse the path, because we recalculated it from the bottom to the top
66 print(path);
67 }

16/20

SOI Workshops 2019
Task springshoes

Springshoes
If we look at the task, there are very strong indicators that this is a dp task: One of them is, that
we have to count something. Another is, that the solution of the problem depends on the solution
for the same problem, but for smaller =’s. Then let’s apply DP on it! The first thing we have to
do, is to find some the recursion formula for the task. Let DP[8] be the number of ways we can
get to a point with distance 8 from the beginning. If there is a tree on 8, then DP[8] = 0, because
we can’t land on a tree. Now let’s look from where we can reach 8. Let’s say we’re at distance 9.
Then we can jump to 8 if 8 − 1 ≤ 9 ≤ 8 − 0. This means, we can add up the possibilities for each
such 9, giving us a recurrence formula which looks like this: DP[8] = ∑8−0

9=8−1 DP[9]. The thing is,
if we make a loop to calculate this sum, we’ll get a running time of O(=2) which is too slow. The
solution is to store something like a global sum variable, and when we calculate the next value of
our DP, we just need to move the sum one to the right, this means removing DP[8 − 1 − 1] and
adding DP[8 − 0].

1 #include <soi>
2

3 signed main()
4 {
5 // Read the input
6 int n = read_int();
7 int a = read_int();
8 int b = read_int();
9 int k = read_int();

10

11 vector<int> vals(n + 1, 0);
12 vector<bool> trees(n + 1, false); // Saves for each place wheter it's a tree
13

14 for (int i = 0; i < k; i++)
15 {
16 int p = read_int();
17 trees[p] = true;
18 }
19

20 vals[0] = 1; // Our table
21

22 int sum = 0; // Our sum variable
23

24 for (int i = 1; i <= n; i++) // The dp
25 {
26 if (i - b - 1 >= 0) sum -= vals[i - b - 1];
27 if (i - a >= 0) sum += vals[i - a];
28 if (!trees[i]) vals[i] = sum;
29 vals[i] %= (int)(1e9+7); // Don't forget to take the modulo!
30 }
31

32 print(vals[n]);
33 }

17/20

SOI Workshops 2019
Task flaghoisting

Hoist the flags!
At first the task looks kind of strange. We send = mice, the 8-th mouse changes the state of the
flags 1, 8 , 8 , 38 , 48 . . . And we should calculate if the =-th flag is up or down at the end, where =
can get up to 1010000.
The first algorithm we could think of is to just simulate the mice. At the beginning, we start

with the =-th flag down. Then for each mouse 8 with 1 ≤ 8 ≤ =, if = is divisible by 8, we change
the state of the flag. In the end, we just check, if the flag is up or down. This approach runs in
O(=) and gives 30 points:

1 #include <soi>
2

3 signed main() {
4 int n = read_int();
5 bool flag = false;
6

7 for (int i = 1; i <= n; i++)
8 {
9 flag = flag ^ !(n % i);

10 }
11

12 if (flag)
13 {
14 print("....o\n####|\n####|\n####|\n....|\n....|\n....|\n....|\n....|\n....|");
15 }
16 else
17 {
18 print("....o\n....|\n....|\n....|\n....|\n....|\n####|\n####|\n####|\n....|");
19 }
20 }

But since this runs in O(=), this is ways too slow (we want to go up to 1010000). So let’s try
to reformulate the problem. In problems like this, it is often very useful to calculate some of
the values by hand, or if we already have a slow solution, we can use it to calculate the flags
for the some =’s. When we run our program on small inputs, we see that the flags are up for
1, 4, 9, 16, 25, 36, 49 . . . This looks interesting: these numbers are all square numbers! And it’s
not only that all these numbers are square numbers, but for each square, the flag is up! Let’s try
to prove this!
The first thing we see, is that the divisors of = themselves have no influence on the flag, it’s

only the number of divisors that has to be odd for the flag to be up. Now for each divisor 3 of
=, we know that =/3 is also a divisor of =. So we can group the divisors in pairs. But if = is a
square, then 3 =

√
= is in the pair with =/3 = 3, so it’s alone. This means, that if = is a square,

then the number of divisors is odd. Otherwise, it’s even. So a better algorithm would be to check
if a number is a square, by calculating the squareroot and “resquare” it:

1 #include <soi>
2

3 signed main() {
4 int n = read_int();
5

6 int sqroot = floor(sqrt(n));
7

8 if (sqroot*sqroot == n)
9 {

10 print("....o\n####|\n####|\n####|\n....|\n....|\n....|\n....|\n....|\n....|");
11 }
12 else
13 {
14 print("....o\n....|\n....|\n....|\n....|\n....|\n####|\n####|\n####|\n....|");
15 }
16 }

18/20

SOI Workshops 2019
Task flaghoisting

This approach runs in O(log(=)) and gives 90 points. Now I’m going to explain a 100 points
solution. This solution is mathematically a bit more difficult, if you’re new, it may be too difficult.
But if you want, you can give it a try.
Since the number is very big, we can’t read it in as int anymore. We should read it in as a

string. But the problem is, we can’t really perform that many useful operations on this string,
so it’s very difficult to calculate with it. But luckily, there’s modular arithmetic! Calculating this
umber modulo 0 other number is very easy. We just loop over the string, when we look at a digit,
just multiply the current number by 10, add the digit, and then use the modulo operator. So we
can calculate the number modulo an other number to get an integer! But what does the residue
of this number help us? We know, that not each residue class of a number is a square. In fact, if
we look modulo a number ?, there are at most d?/2e residue classes modulo ? (easy proof, try to
prove it if you don’t see it). And Euler gives us a very useful criterion to check wheter residue 0
modulo an odd prime ? can be the residue of a square or not: if 0(?−1)/2 ≡ 1 modulo ?, then 0 can
be a square (it doesn’t have to be). If it is ≡ −1, then 0 can not be the residue class of a square. We
can calculate 0(?−1)/2 naively in O(?), but if we use fastpow, we can calculate it in O(log(?)). The
thing is, if we just do this for one prime, we can’t be sure: if = is not a square, it has a chance of
roughly 1/2 that it’s also a squared residue modulo ?, even if it’s not a square. So we have to look
at many ?’s. But how to choose them? At this point, randomizing joins the party! We can just
take < different random primes. We have to choose < such that our program is fast enough,
but < has to be big enough that the chance that = is not a square even if we claim it, is small. If
we look at our runtime, we get O(< log(=) + < log(max(?))), and the chance that our program
claims the wrong thing is roughly (1/2)< . Here is the code (which gets 100 points):

1 #include <vector>
2 #include <iostream>
3 #include <set>
4 #include <cmath>
5 #include <random>
6 #include <ctime>
7

8 #define int int64_t
9 #define runs 100

10

11 using namespace std;
12

13 struct solver
14 {
15 string ip;
16 int iplen;
17 mt19937 rng;
18 uniform_int_distribution<int> uni;
19

20 int fastpowmod(int base, int exp, int mod) // Fastpow modulo an integer
21 {
22 int res = 1;
23 int b = base;
24 int cr = 1;
25 for (int i = 0; i <= ceil(log2(exp)); i++)
26 {
27 if (exp & cr) res *= b;
28 cr <<= 1;
29 b *= b;
30 b %= mod;
31 res %= mod;
32 }
33 return res;
34 }
35

36 int calcresidue(int mod) // Calculate the residue of n modulo a number
37 {
38 int curr = 0;
39 for (int i = 0; i < iplen; i++)

19/20

SOI Workshops 2019
Task flaghoisting

40 {
41 curr *= 10;
42 curr += (ip[i] - 48);
43 curr %= mod;
44 }
45 return curr;
46 }
47

48 void read_ip() // Read the number
49 {
50 cin >> ip;
51 iplen = ip.size();
52 }
53

54 void solve()
55 {
56 rng = mt19937(time(0));
57 uni = uniform_int_distribution<int>(0, 1e12);
58 read_ip();
59 vector<int> primes;
60 for (int i = 3; i < 1e5; i++) // Generate a list with primes
61 {
62 bool pr = true;
63 for (int j = 2; j <= sqrt(i); j++)
64 {
65 if (i % j == 0)
66 {
67 pr = false;
68 break;
69 }
70 }
71 if (pr) primes.push_back(i);
72 }
73 bool sq = true;
74 for (int r = 0; r < runs; r++) // Run it "runs" times
75 {
76 int cpr = uni(rng) % ((int)primes.size());
77 int prime = primes[cpr];
78 int calcres = calcresidue(prime);
79 int crit = fastpowmod(calcres, (prime - 1)/2, prime);
80 if (crit == (prime - 1))
81 {
82 sq = false;
83 }
84 }
85 if (sq) // Print the output
86 {
87 cout << "....o\n####|\n####|\n####|\n....|\n....|\n....|\n....|\n....|\n....|\n";
88 }
89 else
90 {
91 cout << "....o\n....|\n....|\n....|\n....|\n....|\n####|\n####|\n####|\n....|\n";
92 }
93 }
94 };
95

96 signed main()
97 {
98 solver s;
99 s.solve();

100 }

20/20

	Graph Representation
	Stars in the Sky
	Components
	Clawcrane
	Passports
	Erasmus
	Shortest Path
	Seven-segment display
	Tiles
	Triangle Sum (with path)
	Springshoes
	Hoist the flags!

